target gene
Recently Published Documents


TOTAL DOCUMENTS

3828
(FIVE YEARS 1240)

H-INDEX

127
(FIVE YEARS 14)

2022 ◽  
Vol 12 (4) ◽  
pp. 717-723
Author(s):  
Bing Pan ◽  
Binghui Liu ◽  
Juhua Pan ◽  
Jian Xin ◽  
Chenglin Fu

Introduction: Breast cancer (BC) developed in the glandular epithelial tissue of breast. microRNA (miR)-367 is an important player in cancer progression, but has never been studied in BC. This experiment tries to probe the mechanism of miR-367 in BC treatment with downstream target gene. Materials and Methods: Human BC cell lines and healthy breast epithelium cells were applied in this study. After the transfection of miR-367 inhibitor or mimic into BC cells, functional assays were conducted to measure cell growth. Afterwards, flow cytometry was employed in apoptosis verification. Then, target relation between miR-367 and ARID1B was certified. Furthermore, ARID1B level was also measured. Results: miR-367 was underexpressed in human BC cells (p < 0.05). Besides, overexpressed miR-367 inhibited BC cell proliferation and encouraged apoptosis, while underexpressed miR-367 led to an opposite outcome (p < 0.05). This experiment then implied that miR-367 dramatically suppressed the activity of cell transfected with ARID1B-wild type. miR-367 overexpression quenched ARID1B level in BC cells; while silencing miR-367 upregulated ARID1B expression (p < 0.05). Conclusion: Our experiment discovered that miR-367 quenched BC cell growth and promoted apoptosis by targeting ARID1B. This investigation may provide novel insights in BC treatment.


2022 ◽  
Vol 12 (5) ◽  
pp. 1022-1027
Author(s):  
Liangbang Wu ◽  
Xinqiang Wang ◽  
Yuehong Zhang ◽  
Zhenhai Hou ◽  
Longbao Zheng ◽  
...  

This study analyze the effect of exosome secreted from MSCs on osteogenic differentiation in OP rats. The exosome was obtained from cultivated MSCs isolated from OP rats with ultracentrifugation. OP rats were treated with exosome secreted from MSCs of normal rats, exosome secreted from MSCs of OP rats and exosome secreted from MSCs of OP rats with overexpression of ALP followed by analysis of the osteogenic differentiation, the expression of ALP, Bglap and Runx2 and the targeted correlation between miR-351 and ALP. The MSCs in normal rats and OP rats were able to adhere to wall. There was elongated. The level of miR-351 in OP rats was significantly higher than normal rats. The Runx2 expression and ALP activity in rats treated with exosome secreted from MSCs of OP rats was declined significantly compared to that from MSCs of normal rats. ALP was a target gene of miR-351. In conclusion, the exosome secreted from MSCs of OP rats inhibits the osteogenic differentiation possibly through restraining miR-351-ALP.


2022 ◽  
Vol 15 (1) ◽  
pp. 1-8
Author(s):  
Yu-Zhen Li ◽  
◽  
Ya Shen ◽  
Lian-Di Gao ◽  
Xin-Xin Chen ◽  
...  

AIM: To explore the effect of miR-184 and miR-205 on the proliferation and metastasis of conjunctival mucosa associated lymphoid tissue (MALT) lymphoma. METHODS: Tissue of tumor and adjacent normal control from 5 patients with conjunctival MALT was included. RPMI8226 cell line was selected to verify the effect of miRNAs in B cells. The function of microRNA on the RPMI8226 cell apoptosis, migration and invasion was evaluated by apoptosis assay and Transwell assay. The mRNA and protein expression were examined by quantitative RT-PCR and Western blotting. The effect of microRNA on regulation of downstream gene expression was evaluated by luciferase report assay. RESULTS: A decreased level of miR-184 and miR-205 was observed in MALT lymphoma tissue. Exogenous miR-184 and miR-205 analogues promoted apoptosis, and inhibited the survival, migration, and invasion of RPMI8226 cells. miR-184 and miR-205 inhibitor reversed the process. The RNA and protein level of RasL10B and TNFAIP8 were downregulated in MALT lymphoma tissue. The exogenous of miR-184 and miR-205 promoted the expression of RasL10B and TNFAIP8. Meanwhile, inhibition of miR-184 and miR-205 repressed the expression of target gene, RasL10B and TNFAIP8. CONCLUSION: miR-184 and miR-205 suppresses the tumorigenesis of conjunctival MALT lymphoma through regulating RasL10B and TNFAIP8.


2022 ◽  
Author(s):  
N Govardhana Sagar ◽  
A Rajendra Prasad ◽  
Pushpendra Kumar ◽  
Bharat Bhushan ◽  
P Guru Vishnu ◽  
...  

Abstract RNA interference by short hairpin RNAs (shRNAs) is a widely used post transcriptional silencing mechanism for suppressing expression of the target gene. In the current study, five shRNA molecules each against SCD and SREBP1 genes involved in denovo lipid biosynthesis were designed upon considering parameters such as secondary structures of shRNAs, mRNA target regions, GC content and thermodynamic properties (ΔG overall, ΔG duplex and ΔG break-target), synthesized and cloned in pENTR/U6 entry vector to knockdown the expression of SCD and SREBP1 genes. After transfection of these shRNA constructs into the chicken embryonic hepatocytes, expressions of the target genes were monitored by real time PCR. Significant reduction (P<0.05) in the expression of SCD and SREBP1 genes was observed in hepatocytes. The shRNAs against SCD gene showed the knock down efficiency ranged from 20.4% (shRNA5) to 74.2% (shRNA2). In case of SREBP1 gene, the shRNAs showed knock-down efficiency ranging from 26.8% (shRNA4) to 95.85% (shRNA1). The shRNAs against both the genes introduced in chicken hepatocyte cells did not show any significant impact on expression of immune response genes (IFNA and IFNB) in those cells. These results clearly demonstrated the successful down regulation of the expression of SCD and SREBP1 genes by the shRNA molecules against both the target genes under in vitro condition. It is concluded that the shRNA molecules against SCD and SREBP1 genes showed great potential to silence the expression of these genes under in vitro chicken embryonic hepatocyte cells.


2022 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Zhen Ye ◽  
Mai Mohamed Abdelmoaty ◽  
Stephen M. Curran ◽  
Shetty Ravi Dyavar ◽  
Devendra Kumar ◽  
...  

RNA interference (RNAi) molecules have tremendous potential for cancer therapy but are limited by insufficient potency after intravenous (IV) administration. We previously found that polymer complexes (polyplexes) formed between 3′-cholesterol-modified siRNA (Chol-siRNA) or DsiRNA (Chol-DsiRNA) and the cationic diblock copolymer PLL[30]-PEG[5K] greatly increase RNAi potency against stably expressed LUC mRNA in primary syngeneic murine breast tumors after daily IV dosing. Chol-DsiRNA polyplexes, however, maintain LUC mRNA suppression for ~48 h longer after the final dose than Chol-siRNA polyplexes, which suggests that they are the better candidate formulation. Here, we directly compared the activities of Chol-siRNA polyplexes and Chol-DsiRNA polyplexes in primary murine 4T1 breast tumors against STAT3, a therapeutically relevant target gene that is overexpressed in many solid tumors, including breast cancer. We found that Chol-siSTAT3 polyplexes suppressed STAT3 mRNA in 4T1 tumors with similar potency (half-maximal ED50 0.3 mg/kg) and kinetics (over 96 h) as Chol-DsiSTAT3 polyplexes, but with slightly lower activity against total Stat3 protein (29% vs. 42% suppression) and tumor growth (11.5% vs. 8.6% rate-based T/C ratio) after repeated IV administration of equimolar, tumor-saturating doses every other day. Thus, both Chol-siRNA polyplexes and Chol-DsiRNA polyplexes may be suitable clinical candidates for the RNAi therapy of breast cancer and other solid tumors.


Author(s):  
Li-Yu Chen ◽  
Lee-Wen Chen ◽  
Chien-Hui Hung ◽  
Chun-Liang Lin ◽  
Shie-Shan Wang ◽  
...  

The ORF50 protein of Kaposi’s sarcoma-associated herpesvirus (KSHV) is the key viral protein that controls the switch from latency to lytic reactivation. It is a potent transactivator that can activate target gene promoters via interacting with other cellular DNA-binding transcription factors, such as Sp3.


2022 ◽  
Vol 66 (1) ◽  
Author(s):  
Qingwen Li ◽  
Jiao Zhang ◽  
Shougang Liu ◽  
Fangfei Zhang ◽  
Jiayi Zhuang ◽  
...  

Psoriasis is a chronic inflammatory skin disease. Although miRNAs are reported to be associated with the pathogenesis of psoriasis, the contribution of individual microRNAs toward psoriasis remains unclear. The miR-17-92 cluster regulates cell growth and immune functions that are associated with psoriasis. miR-17-3p is a member of miR-17-92 cluster; however, its role in dermatological diseases remains unclear. Our study aims at investigating the effects of miR-17-3p and its potential target gene on keratinocytes proliferation and secretion of pro-inflammatory cytokine and their involvement in psoriasis. Initially, we found that miR-17-3p was upregulated in psoriatic skin lesions, and bioinformatic analyses suggested that CTR9 is likely to be a target gene of miR-17-3p. Quantitative reverse-transcriptase PCR and immunohistochemical analysis revealed that CTR9 expression was downregulated in psoriatic lesions. Using dual-luciferase reporter assays, we identified CTR9 as a direct target of miR-17-3p. Further functional experiments demonstrated that miR-17-3p promoted the proliferation and pro-inflammatory cytokine secretion of keratinocytes, whereas CTR9 exerted the opposite effects. Gain-of-function studies confirmed that CTR9 suppression partially accounted for the effects of miR-17-3p in keratinocytes. Furthermore, Western blot revealed that miR-17-3p activates the downstream STAT3 signaling pathway while CTR9 inactivates the STAT3 signaling pathway. Together, these findings indicate that miR-17-3p regulates keratinocyte proliferation and pro-inflammatory cytokine secretion partially by targeting the CTR9, which inactivates the downstream STAT3 protein, implying that miR-17-3p might be a novel therapeutic target for psoriasis.


2022 ◽  
Author(s):  
Kimberly N. Bekas ◽  
Bryan T. Phillips

Asymmetric cell division (ACD) is a fundamental mechanism of developmental cell fate specification and adult tissue homeostasis. In C. elegans, the Wnt/beta-catenin asymmetry (WβA) pathway regulates ACDs throughout embryonic and larval development. Under control of Wnt ligand-induced polarity, the transcription factor TCF/POP-1 functions with the coactivator beta-catenin/SYS-1 to activate gene expression in the signaled cell or, in absence of the coactivator, to repress Wnt target genes in the nascent unsignaled daughter cell. To date, a broad investigation of Groucho function in WβA is lacking and the function of the short Groucho AES homolog, lsy-22 has only been evaluated in C. elegans neuronal cell fate decisions. Further, there is conflicting evidence showing TCF utilizing Groucho-mediated repression may be either aided or repressed by addition of AES subfamily of Groucho proteins. Here we demonstrate a genetic interaction between Groucho repressors and TCF/POP-1 in ACDs in the somatic gonad, the seam hypodermal stem cell lineage and the early embryo. Specifically, in the somatic gonad lineage, the signaled cell fate increases after individual and double Groucho loss of function, representing the first demonstration of Groucho function in wild-type WβA ACD. Further, WβA target gene misexpression occurs at a higher rate than DTC fate changes, suggesting derepression generates an intermediate cell fate. In seam cell ACD, loss of Groucho unc-37 or Groucho-like lsy-22 in a pop-1(RNAi) hypomorphic background enhances a pop-1 seam cell expansion and target gene misregulation. Moreover, while POP-1 depletion in lsy-22 null mutants yielded an expected increase in seam cells we observed a surprising seam cell decrease in the unc-37 null subjected to POP-1 depletion. This phenotype may be due to UNC-37 regulation of pop-1 expression in this tissue since we find misregulation of POP-1 in unc-37 mutants. Lastly, Groucho functions in embryonic endoderm development since we observe ectopic endoderm target gene expression in lsy-22(ot244) heterozygotes and unc-37(tm4649) heterozygotes subjected to intermediate levels of hda-1(RNAi). Together, these data indicate Groucho repressor modulation of cell fate via regulation of POP-1/TCF repression is widespread in asymmetric cell fate decisions and suggests a novel role of LSY-22 as a bona fide TCF repressor. As AES Grouchos are well-conserved, our model of combinatorial TCF repression by both Gro/TLE and AES warrants further investigation. 


2022 ◽  
Vol 8 ◽  
Author(s):  
Behrouz Shademan ◽  
Alireza Nourazarian ◽  
Saba Hajazimian ◽  
Alireza Isazadeh ◽  
Cigir Biray Avci ◽  
...  

Outbreak and rapid spread of coronavirus disease (COVID-19) caused by coronavirus acute respiratory syndrome (SARS-CoV-2) caused severe acute respiratory syndrome (SARS-CoV-2) that started in Wuhan, and has become a global problem because of the high rate of human-to-human transmission and severe respiratory infections. Because of high prevalence of SARS-CoV-2, which threatens many people worldwide, rapid diagnosis and simple treatment are needed. Genome editing is a nucleic acid-based approach to altering the genome by artificially changes in genetic information and induce irreversible changes in the function of target gene. Clustered, regularly interspaced short palindromic repeats (CRISPR/Cas) could be a practical and straightforward approach to this disease. CRISPR/Cas system contains Cas protein, which is controlled by a small RNA molecule to create a double-stranded DNA gap. Evidence suggested that CRISPR/Cas was also usable for diagnosis and treatment of SARS-CoV-2 infection. In this review study, we discoursed on application of CRISPR technology in detection and treatment of SARS-CoV-2 infection. Another aspect of this study was to introduce potential future problems in use of CRISPR/Cas technology.


2022 ◽  
Author(s):  
Liming Jin ◽  
Zhaoxia Zhang ◽  
Zhang Wang ◽  
Xiaojun Tan ◽  
Zhaoying Wang ◽  
...  

Abstract Background: CSCs play an important role in tumor development. Some studies have demonstrated that piRNAs participate in the progression of various cancers. However, the detailed function of piRNAs in CSCs requires further investigation. This study aimed to investigate the significance of some piRNAs in Piwil2-iCSCs. Methods and Results: Differentially expressed piRNAs in Piwil2-iCSCs were screened by high-throughput sequencing. Target genes were predicted by the miRanda algorithm and subjected to GO and KEGG analysis. One of the differential piRNAs, novel piRNA MW557525, was transfected and its target gene NOP56 was silenced in Piwil2-iCSCs, respectively. RT-qPCR, western blot and dual luciferase reporter assay were used to investigate the interaction of piRNA MW557525 and NOP56. We identified the effect of piRNA MW557525 and NOP56 knockdown on cell proliferation, migration, invasion, and apoptosis via CCK-8, transwell assay, and flow cytometry. The expressions of CD24, CD133, KLF4, and SOX2 were detected via WB. The results showed that piRNA MW557525 was negatively correlated with NOP56, and it promoted the proliferation, migration, invasion, and inhibited apoptosis in Piwil2-iCSCs, and it also promoted the expressions of CD24, CD133, KLF4, and SOX2, while NOP56 showed the opposite effect. Conclusions: These findings suggested that novel piRNA MW557525 might be a novel therapeutic target in Piwil2-iCSCs.


Sign in / Sign up

Export Citation Format

Share Document