transient expression
Recently Published Documents


TOTAL DOCUMENTS

1482
(FIVE YEARS 187)

H-INDEX

83
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Anika Mijakovac ◽  
Karlo Miškec ◽  
Jasminka Krištić ◽  
Vedrana Vičić Bočkor ◽  
Vanja Tadić ◽  
...  

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 107
Author(s):  
Narmatha Gurumoorthy ◽  
Fazlina Nordin ◽  
Gee Jun Tye ◽  
Wan Safwani Wan Kamarul Zaman ◽  
Min Hwei Ng

Lentiviral vectors (LVs) play an important role in gene therapy and have proven successful in clinical trials. LVs are capable of integrating specific genetic materials into the target cells and allow for long-term expression of the cDNA of interest. The use of non-integrating LVs (NILVs) reduces insertional mutagenesis and the risk of malignant cell transformation over integrating lentiviral vectors. NILVs enable transient expression or sustained episomal expression, especially in non-dividing cells. Important modifications have been made to the basic human immunodeficiency virus (HIV) structures to improve the safety and efficacy of LVs. NILV-aided transient expression has led to more pre-clinical studies on primary immunodeficiencies, cytotoxic cancer therapies, and hemoglobinopathies. Recently, the third generation of self-inactivating LVs was applied in clinical trials for recombinant protein production, vaccines, gene therapy, cell imaging, and induced pluripotent stem cell (iPSC) generation. This review discusses the basic lentiviral biology and the four systems used for generating NILV designs. Mutations or modifications in LVs and their safety are addressed with reference to pre-clinical studies. The detailed application of NILVs in promising pre-clinical studies is also discussed.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12664
Author(s):  
Sen Zhang ◽  
Shaoping Wu ◽  
Chunhua Hu ◽  
Qiaosong Yang ◽  
Tao Dong ◽  
...  

The CRISPR/Cas9-mediated genome editing system has been used extensively to engineer targeted mutations in a wide variety of species. Its application in banana, however, has been hindered because of the species’ triploid nature and low genome editing efficiency. This has delayed the development of a DNA-free genome editing approach. In this study, we reported that the endogenous U6 promoter and banana codon-optimized Cas9 apparently increased mutation frequency in banana, and we generated a method to validate the mutation efficiency of the CRISPR/Cas9-mediated genome editing system based on transient expression in protoplasts. The activity of the MaU6c promoter was approximately four times higher than that of the OsU6a promoter in banana protoplasts. The application of this promoter and banana codon-optimized Cas9 in CRISPR/Cas9 cassette resulted in a fourfold increase in mutation efficiency compared with the previous CRISPR/Cas9 cassette for banana. Our results indicated that the optimized CRISPR/Cas9 system was effective for mutating targeted genes in banana and thus will improve the applications for basic functional genomics. These findings are relevant to future germplasm improvement and provide a foundation for developing DNA-free genome editing technology in banana.


2021 ◽  
Vol 86 (6) ◽  
pp. 674-681
Author(s):  
Xinyang Xu ◽  
◽  
Jia Shen ◽  
Yuejian Zhang ◽  
Xiaowei Niu ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ying Li ◽  
Min Sun ◽  
Xin Wang ◽  
Yue-Jing Zhang ◽  
Xiao-Wei Da ◽  
...  

Abstract Background In the last decades, replicating expression vectors based on plant geminivirus have been widely used for enhancing the efficiency of plant transient expression. By using the replicating expression vector derived from bean yellow dwarf virus and green fluorescent protein as a reporter, we investigated the effects of α-naphthalene acetic acid, gibberellins3, and 6-benzyladenine, as three common plant growth regulators, on the plant biomass and efficiency of transient expression during the process of transient expression in Nicotiana benthamiana L. leaves. Results With the increase of the concentration of α-naphthalene acetic acid, gibberellins3, and 6-benzyladenine (from 0.1 to 1.6 mg/L), the fresh weight, dry weight, and leaf area of the seedlings increased first and then returned to the levels similar to the controls (without chemical treatment). The treatment with α-naphthalene acetic acid at 0.2 and 0.4 mg/L can enhance the level of transient expression of green fluorescent protein, which peaked at 0.4 mg/L α-naphthalene acetic acid and was increased about by 19%, compared to the controls. Gibberellins3 at 0.1–0.4 mg/L can enhance the level of transient expression of green fluorescent protein, which peaked at 0.2 mg/L gibberellins3 and was increased by 25%. However, the application of 6-benzyladenine led to decrease in the level of transient expression of green fluorescent protein. Conclusions The appropriate plant growth regulators at moderate concentration could be beneficial to the expression of foreign genes from the Agrobacterium-mediated transient expression system in plants. Thus, appropriate plant growth regulators could be considered as exogenous components that are applied for the production of recombinant protein by plant-based transient expression systems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojuan Yin ◽  
Yibing Zhang ◽  
Li Zhang ◽  
Baohua Wang ◽  
Yidi Zhao ◽  
...  

Flower color is the decisive factor that affects the commercial value of ornamental flowers. Therefore, it is important to study the regulation of flower color formation in lily to discover the positive and negative factors that regulate this important trait. In this study, MYB transcription factors (TFs) were characterized to understand the regulatory mechanism of anthocyanin biosynthesis in lily. Two R2R3-MYB TFs, LvMYB5, and LvMYB1, were found to regulate anthocyanin biosynthesis in lily flowers. LvMYB5, which has an activation motif, belongs to the SG6 MYB protein subgroup of Arabidopsis thaliana. Transient expression of LvMYB5 indicated that LvMYB5 can promote coloration in Nicotiana benthamiana leaves, and that expression of LvMYB5 increases the expression levels of NbCHS, NbDFR, and NbANS. VIGS experiments in lily petals showed that the accumulation of anthocyanins was reduced when LvMYB5 was silenced. Luciferase assays showed that LvMYB5 can promote anthocyanin synthesis by activating the ANS gene promoter. Therefore, LvMYB5 plays an important role in flower coloration in lily. In addition, the transient expression experiment provided preliminary evidence that LvMYB1 (an R2R3-MYB TF) inhibits anthocyanin synthesis in lily flowers. The discovery of activating and inhibitory factors related to anthocyanin biosynthesis in lily provides a theoretical basis for improving flower color through genetic engineering. The results of our study provide a new direction for the further study of the mechanisms of flower color formation in lilies.


2021 ◽  
Vol 57 (7) ◽  
pp. 800-807
Author(s):  
L. N. Konovalova ◽  
S. R. Strelnikova ◽  
N. E. Zlobin ◽  
P. N. Kharchenko ◽  
R. A. Komakhin

Sign in / Sign up

Export Citation Format

Share Document