Benthic communities of the Gippsland Lakes, Victoria

1982 ◽  
Vol 33 (5) ◽  
pp. 901 ◽  
Author(s):  
GCB Poore

Samples of benthos from muddy or sandy bottoms along the axis of the Gippsland Lakes, Victoria, and on shallow seagrass beds were taken between November 1978 and October 1979. The benthic communities are described and the likely effects resulting from changes in water usage in the catchment discussed. Gradients in environmental parameters (salinity, temperature, dissolved oxygen and suspended solids) were not regular but were steepest near a constriction in the system, McLennans Strait. Ninety species of benthic fauna were recorded, with greatest diversity and density at the seagrass sites. The fauna was similar to that recorded in other south-eastern Australian estuaries except for its rich amphipod fauna and depauperate bivalve fauna. Densities, especially on seagrass, were higher than recorded in other estuaries although the number of species was lower. Temporal changes in the fauna could not be related clearly to seasonal changes in temperature or other environmental factors. Classification of the data revealed a seagrass community and smaller groups of species and stations, only loosely indicating a faunal gradient along the lakes. A distinct marine fauna was recognized on well-sorted sand at the lower end of the lakes, Reeve Channel, and a freshwater component at the opposite end. Physical structures such as McLennans Strait are responsible for the major differences between the faunas of adjacent areas in the greater part of the system. It is suggested that increased salinity in the future may allow establishment of euryhaline species in more placid parts of the lakes but that deoxygenation of bottom water and high benthic mortalities may occur if a salt wedge is maintained.

1992 ◽  
Vol 338 (1285) ◽  
pp. 299-309 ◽  

Environmental change is the norm and it is likely that, particularly on the geological timescale, the temperature regime experienced by marine organisms has never been stable. These temperature changes vary in timescale from daily, through seasonal variations, to long-term environmental change over tens of millions of years. Whereas physiological work can give information on how individual organisms may react phenotypically to short-term change, the way benthic communities react to long-term change can only be studied from the fossil record. The present benthic marine fauna of the Southern Ocean is rich and diverse, consisting of a mixture of taxa with differing evolutionary histories and biogeographical affinities, suggesting that at no time in the Cenozoic did continental ice sheets extend sufficiently to eradicate all shallow-water faunas around Antarctica at the same time. Nevertheless, certain features do suggest the operation of vicariant processes, and climatic cycles affecting distributional ranges and ice-sheet extension may both have enhanced speciation processes. The overall cooling of southern high-latitude seas since the mid-Eocene has been neither smooth nor steady. Intermittent periods of global warming and the influence of Milankovitch cyclicity is likely to have led to regular pulses of migration in and out of Antarctica. The resultant diversity pump may explain in part the high species richness of some marine taxa in the Southern Ocean. It is difficult to suggest how the existing fauna will react to present global warming. Although it is certain the fauna will change, as all faunas have done throughout evolutionary time, we cannot predict with confidence how it will do so.


Author(s):  
Roksana Jahan ◽  
Hyu Chang Choi ◽  
Young Seuk Park ◽  
Young Cheol Park ◽  
Ji Ho Seo ◽  
...  

Self-Organizing Maps (SOM) have been used for patterning and visualizing ten environmental parameters and phytoplankton biomass in a mactrotidal (>10 m) Gyeonggi Bay and artificial Shihwa Lake during 1986–2004. SOM segregated study areas into four groups and ten subgroups. Two strikingly alternative states are frequently observed: the first is a diverse non-eutrophic state designated by three groups (SOM 1–3), and the second is a eutrophic state (SOM 4: Shihwa Lake and Upper Gyeonggi Bay; summer season) characterized by enhanced nutrients (3 mg l−1 dissolved inorganic nitrogen, 0.1 mg l−1 PO4) that act as a signal and response to that signal as algal blooms (24 µg chlorophyll-a l−1). Bloom potential in response to nitrification is affiliated with high temperature (r = 0.26), low salinity (r = −0.40) and suspended solids (r = –0.27). Moreover, strong stratification in the Shihwa Lake has accelerated harmful algal blooms and hypoxia. The non-eutrophic states (SOM 1–3) are characterized by macro-tidal estuaries exhibiting a tolerance to pollution with nitrogen-containing nutrients and retarding any tendency toward stratification. SOM 1 (winter) is more distinct from SOM 4 due to higher suspended solids (>50 mg l−1) caused by resuspension that induces light limitation and low chlorophyll-a (<5 µg l−1). In addition, eutrophication-induced shifts in phytoplankton communities are noticed during all the seasons in Gyeonggi Bay. Overall, SOM showed high performance for visualization and abstraction of ecological data and could serve as an efficient ecological map that can specify blooming regions and provide a comprehensive view on the eutrophication process in a macrotidal estuary.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ying Tang ◽  
Dong-Yan Wu ◽  
Jing Fan

This paper proposes a computational approach to seasonal changes of living leaves by combining the geometric deformations and textural color changes. The geometric model of a leaf is generated by triangulating the scanned image of a leaf using an optimized mesh. The triangular mesh of the leaf is deformed by the improved mass-spring model, while the deformation is controlled by setting different mass values for the vertices on the leaf model. In order to adaptively control the deformation of different regions in the leaf, the mass values of vertices are set to be in proportion to the pixels' intensities of the corresponding user-specified grayscale mask map. The geometric deformations as well as the textural color changes of a leaf are used to simulate the seasonal changing process of leaves based on Markov chain model with different environmental parameters including temperature, humidness, and time. Experimental results show that the method successfully simulates the seasonal changes of leaves.


Sign in / Sign up

Export Citation Format

Share Document