scholarly journals Experimental Quantum Ratchets based on Solid State Nanostructures

1999 ◽  
Vol 52 (5) ◽  
pp. 895 ◽  
Author(s):  
H. Linke

Ratchets are spatially asymmetric devices in which particles can move on average in one direction in the absence of external net forces or gradients. This is made possible by the rectification of fluctuations, which also provide the energy for the process. Interest in the physics of ratchets was revived in recent years when it emerged that the ratchet principle may be a suitable physical model for ‘molecular motors’, which are central to many fundamental biological processes, such as intracellular transport or muscle contraction. Most ratchets studied so far have relied on classical effects, but recently ‘quantum ratchets’, involving quantum effects, have also been studied. In the present article it is pointed out that semiconductor or metal nanostructures are very suitable systems for the realisation of experimental quantum ratchets. Recent experimental studies of a quantum ratchet based on an asymmetric quantum dot are reviewed.

ACS Photonics ◽  
2021 ◽  
Author(s):  
Enguo Chen ◽  
Jianyao Lin ◽  
Tao Yang ◽  
Yu Chen ◽  
Xiang Zhang ◽  
...  

2012 ◽  
Vol 10 (07) ◽  
pp. 1250077 ◽  
Author(s):  
ZHAO-HUA DING ◽  
YONG SUN ◽  
JING-LIN XIAO

We investigate the eigenenergies and the eigenfunctions of the ground and the first excited states of an electron, which is strongly coupled to LO-phonon in an asymmetric quantum dot (QD) by using variational method of Pekar type. The present system may be used as a two-level qubit. When the electron is in the superposition state of the ground and the first excited states, the probability density of the electron oscillates in the QD with a certain period. It is found that the oscillation period is an increasing function of the transverse and the longitudinal effective confinement lengths of the QD, whereas it is a decreasing one of the electron–phonon coupling strength.


1998 ◽  
Vol 58 (16) ◽  
pp. R10151-R10154 ◽  
Author(s):  
R. Heitz ◽  
I. Mukhametzhanov ◽  
P. Chen ◽  
A. Madhukar

2011 ◽  
Vol 10 (03) ◽  
pp. 501-505 ◽  
Author(s):  
ZHIXIN LI ◽  
JUAN XIAO ◽  
AIYONG LIU ◽  
JINGLIN XIAO

In this paper, on the basis of Huybrechs' strong-coupled polaron model, the Tokuda-modified linear-combination operator method and the unitary transformation method are used to study the properties of the strong-coupled bound polaron considering the influence of Rashba effect, which is brought by the spin-orbit (SO) interaction, in an asymmetric quantum dot (QD). The expression for the effective mass of the polaron as functions of the transverse and longitudinal bound strengths, velocity, vibration frequency, and the bound potential has been derived. After a simple numerical calculation on the RbCl crystal, we found that the total effective mass of the bound polaron is composed of three parts. The interaction between the orbit and the spin with different directions has different effects on the effective mass of the bound polaron.


2015 ◽  
Vol 89 (12) ◽  
pp. 1247-1250 ◽  
Author(s):  
Z.-H. Liang ◽  
B. Qi ◽  
J.-L. Xiao

Sign in / Sign up

Export Citation Format

Share Document