Biological Processes
Recently Published Documents





2021 ◽  
Eerik Aunin ◽  
Matthew Berriman ◽  
Adam James Reid

Genome architecture describes how genes and other features are arranged in genomes. These arrangements reflect the evolutionary pressures on genomes and underlie biological processes such as chromosomal segregation and the regulation of gene expression. We present a new tool called Genome Decomposition Analysis (GDA) that characterises genome architectures and acts as an accessible approach for discovering hidden features of a genome assembly. With the imminent deluge of high quality genome assemblies from projects such as the Darwin Tree of Life and the Earth BioGenome Project, GDA has been designed to facilitate their exploration and the discovery of novel genome biology. We highlight the effectiveness of our approach in characterising the genome architectures of single-celled eukaryotic parasites from the phylum Apicomplexa and show that it scales well to large genomes.

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1809
Cyrille Sabot ◽  
Péter Kele

The selective functionalization of biomolecules such as proteins, nucleic acids, lipids or carbohydrates is a focus of persistent interest due to their widespread use, ranging from basic chemical biology research to gain insight into biological processes to the most promising biomedical applications, including the development of diagnostics or targeted therapies [...]

Shilang Xiao ◽  
Xiaoming Liu ◽  
Lingzhi Yuan ◽  
Fen Wang

Background: Accumulating literature demonstrates that long noncoding RNAs (lncRNAs) are involved in ferroptosis and gastric cancer progression. However, the predictive value of ferroptosis-related lncRNAs for prognosis and therapeutic response is yet to be elucidated in gastric cancer (GC).Method: The transcriptomic data and corresponding clinical information of GC patients were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database. The association between ferroptosis-related lncRNAs and ferroptosis regulators was analyzed by Spearman correlation analysis. Then, we established a risk predictive model based on the ferroptosis-related lncRNAs using multivariate Cox regression analysis. Furthermore, we performed correlation analysis for the risk score and characteristics of biological processes, immune landscape, stromal activity, genomic integrity, drug response, and immunotherapy efficacy.Results: We constructed a 17-ferroptosis-related-lncRNA signature via multivariate Cox analysis to divide patients into two groups: low- and high-risk groups. The low-risk group was linked to prolonged overall survival and relapse-free survival. The risk score had good predictive ability to predict the prognosis of GC patients compared with other clinical biomarkers. We found that the high-risk group was associated with activation of carcinogenetic signaling pathways, including stromal activation, epithelial-mesenchymal-transition (EMT) activation, and immune escape through integrated bioinformatics analysis. In contrast, the low-risk group was associated with DNA replication, immune-flamed state, and genomic instability. Additionally, through Spearman correlation analysis, we found that patients in the high-risk group may respond well to drugs targeting cytoskeleton, WNT signaling, and PI3K/mTOR signaling, and drugs targeting chromatin histone acetylation, cell cycle, and apoptosis regulation could bring more benefits for the low-risk group. The high-risk group was associated with poor immunotherapy efficacy.Conclusion: Our study systematically evaluated the role of ferroptosis-related lncRNAs in t tumor microenvironment, therapeutic response, and prognosis of GC. Risk score–based stratification could reflect the characteristic of biological processes, immune landscape, stromal activity, genomic stability, and pharmaceutical profile in GC patients. The ferroptosis-related lncRNA signature could serve as a reliable biomarker to predict prognosis and therapeutic response of patients with GC.

2021 ◽  
Pan He ◽  
Feng Liu ◽  
Zhijun Wang ◽  
Haoli Gong ◽  
Meilan Zhang ◽  

Abstract Background Circular RNAs (circRNAs) are forms of non-coding RNAs that have crucial roles in regulation of various biological processes of several malignant tumors. circKIF4A is closely associated with malignant progression of a variety of cancers. However, the molecular mechanisms as well as roles of circKIF4A in osteosarcoma (OS) have not yet been clearly elucidated. Methods We evaluated the expression of circKIF4A in OS. Colony-formation, cell counting kit-8 (CCK-8), transwell and mice metastasis model assays were done to explore the roles of circKIF4A in vitro and in vivo. TargetScan database, double luciferase, quantitative reverse transcription polymerase chain reaction analysis (RT-qPCR), and RNA immunoprecipitation (RIP) were done to investigate the associated molecular mechanisms. Results In both OS cells and tissues, circKIF4A (hsa_circ_0007255) was found to be upregulated. In vitro and in vivo, circKIF4A knockdown markedly suppressed OS proliferation as well as metastasis. circKIF4A enhanced OS growth as well as metastasis by sponging miR-515-5p and by upregulating SLC7A11. Conclusions We identified the biological significance of the circKIF4A-miR-515-5p-SLC7A11 axis in OS cell proliferation and metastasis, which is important in OS monitoring and treatment. More studies on circKIF4A will inform on the diagnostic markers for early OS screening.

2021 ◽  
Vol 11 (1) ◽  
Miloslav Sanda ◽  
Jaeil Ahn ◽  
Petr Kozlik ◽  
Radoslav Goldman

AbstractCarbohydrates form one of the major groups of biological macromolecules in living organisms. Many biological processes including protein folding, stability, immune response, and receptor activation are regulated by glycosylation. Fucosylation of proteins regulates such processes and is associated with various diseases including autoimmunity and cancer. Mass spectrometry efficiently identifies structures of fucosylated glycans or sites of core fucosylated N-glycopeptides but quantification of the glycopeptides remains less explored. We performed experiments that facilitate quantitative analysis of the core fucosylation of proteins with partial structural resolution of the glycans and we present results of the mass spectrometric SWATH-type DIA analysis of relative abundances of the core fucosylated glycoforms of 45 glycopeptides to their nonfucosylated glycoforms derived from 18 serum proteins in liver disease of different etiologies. Our results show that a combination of soft fragmentation with exoglycosidases is efficient at the assignment and quantification of the core fucosylated N-glycoforms at specific sites of protein attachment. In addition, our results show that disease-associated changes in core fucosylation are peptide-dependent and further differ by branching of the core fucosylated glycans. Further studies are needed to verify whether tri- and tetra-antennary core fucosylated glycopeptides could be used as markers of liver disease progression.

Juan Pablo López-Cervantes ◽  
Marianne Lønnebotn ◽  
Nils Oskar Jogi ◽  
Lucia Calciano ◽  
Ingrid Nordeide Kuiper ◽  

Emerging research suggests environmental exposures before conception may adversely affect allergies and lung diseases in future generations. Most studies are limited as they have focused on single exposures, not considering that these diseases have a multifactorial origin in which environmental and lifestyle factors are likely to interact. Traditional exposure assessment methods fail to capture the interactions among environmental exposures and their impact on fundamental biological processes, as well as individual and temporal factors. A valid estimation of exposure preconception is difficult since the human reproductive cycle spans decades and the access to germ cells is limited. The exposome is defined as the cumulative measure of external exposures on an organism (external exposome), and the associated biological responses (endogenous exposome) throughout the lifespan, from conception and onwards. An exposome approach implies a targeted or agnostic analysis of the concurrent and temporal multiple exposures, and may, together with recent technological advances, improve the assessment of the environmental contributors to health and disease. This review describes the current knowledge on preconception environmental exposures as related to respiratory health outcomes in offspring. We discuss the usefulness and feasibility of using an exposome approach in this research, advocating for the preconception exposure window to become included in the exposome concept.

2021 ◽  
Vol 17 (12) ◽  
pp. e1009661
Katarína Bod’ová ◽  
Enikő Szép ◽  
Nicholas H. Barton

Realistic models of biological processes typically involve interacting components on multiple scales, driven by changing environment and inherent stochasticity. Such models are often analytically and numerically intractable. We revisit a dynamic maximum entropy method that combines a static maximum entropy with a quasi-stationary approximation. This allows us to reduce stochastic non-equilibrium dynamics expressed by the Fokker-Planck equation to a simpler low-dimensional deterministic dynamics, without the need to track microscopic details. Although the method has been previously applied to a few (rather complicated) applications in population genetics, our main goal here is to explain and to better understand how the method works. We demonstrate the usefulness of the method for two widely studied stochastic problems, highlighting its accuracy in capturing important macroscopic quantities even in rapidly changing non-stationary conditions. For the Ornstein-Uhlenbeck process, the method recovers the exact dynamics whilst for a stochastic island model with migration from other habitats, the approximation retains high macroscopic accuracy under a wide range of scenarios in a dynamic environment.

Yating Xu ◽  
Menggang Zhang ◽  
Qiyao Zhang ◽  
Xiao Yu ◽  
Zongzong Sun ◽  

RNA methylation is considered a significant epigenetic modification, a process that does not alter gene sequence but may play a necessary role in multiple biological processes, such as gene expression, genome editing, and cellular differentiation. With advances in RNA detection, various forms of RNA methylation can be found, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 5-methylcytosine (m5C). Emerging reports confirm that dysregulation of RNA methylation gives rise to a variety of human diseases, particularly hepatocellular carcinoma. We will summarize essential regulators of RNA methylation and biological functions of these modifications in coding and noncoding RNAs. In conclusion, we highlight complex molecular mechanisms of m6A, m5C, and m1A associated with hepatocellular carcinoma and hope this review might provide therapeutic potent of RNA methylation to clinical research.

Claudia Igler ◽  
Jana S. Huisman ◽  
Berit Siedentop ◽  
Sebastian Bonhoeffer ◽  
Sonja Lehtinen

As infectious agents of bacteria and vehicles of horizontal gene transfer, plasmids play a key role in bacterial ecology and evolution. Plasmid dynamics are shaped not only by plasmid–host interactions but also by ecological interactions between plasmid variants. These interactions are complex: plasmids can co-infect the same cell and the consequences for the co-resident plasmid can be either beneficial or detrimental. Many of the biological processes that govern plasmid co-infection—from systems that exclude infection by other plasmids to interactions in the regulation of plasmid copy number—are well characterized at a mechanistic level. Modelling plays a central role in translating such mechanistic insights into predictions about plasmid dynamics and the impact of these dynamics on bacterial evolution. Theoretical work in evolutionary epidemiology has shown that formulating models of co-infection is not trivial, as some modelling choices can introduce unintended ecological assumptions. Here, we review how the biological processes that govern co-infection can be represented in a mathematical model, discuss potential modelling pitfalls, and analyse this model to provide general insights into how co-infection impacts ecological and evolutionary outcomes. In particular, we demonstrate how beneficial and detrimental effects of co-infection give rise to frequency-dependent selection on plasmid variants. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2154
Rakesh Kumar ◽  
Rama Sinha ◽  
Pushpa Kumari Sharma ◽  
Nishita Ivy ◽  
Pawan Kumar ◽  

Fluoride is widely found in soil–water systems due to anthropogenic and geogenic activities that affect millions worldwide. Fluoride ingestion results in chronic and acute toxicity, including skeletal and dental fluorosis, neurological damage, and bone softening in humans. Therefore, this review paper summarizes biological processes for fluoride remediation, i.e., bioaccumulation in plants and microbially assisted systems. Bioremediation approaches for fluoride removal have recently gained prominence in removing fluoride ions. Plants are vulnerable to fluoride accumulation in soil, and their growth and development can be negatively affected, even with low fluoride content in the soil. The microbial bioremediation processes involve bioaccumulation, biotransformation, and biosorption. Bacterial, fungal, and algal biomass are ecologically efficient bioremediators. Most bioremediation techniques are laboratory-scale based on contaminated solutions; however, treatment of fluoride-contaminated wastewater at an industrial scale is yet to be investigated. Therefore, this review recommends the practical applicability and sustainability of microbial bioremediation of fluoride in different environments.

Sign in / Sign up

Export Citation Format

Share Document