Electron Phonon Coupling
Recently Published Documents





2022 ◽  
Vol 12 (2) ◽  
pp. 874
Yao Wei ◽  
Francesco Macheda ◽  
Zelong Zhao ◽  
Terence Tse ◽  
Evgeny Plekhanov ◽  

Hydrogen-rich superhydrides are promising high-Tc superconductors, with superconductivity experimentally observed near room temperature, as shown in recently discovered lanthanide superhydrides at very high pressures, e.g., LaH10 at 170 GPa and CeH9 at 150 GPa. Superconductivity is believed to be closely related to the high vibrational modes of the bound hydrogen ions. Here, we studied the limit of extreme pressures (above 200 GPa) where lanthanide hydrides with large hydrogen content have been reported. We focused on LaH16 and CeH16, two prototype candidates for achieving a large electronic contribution from hydrogen in the electron–phonon coupling. In this work, we propose a first-principles calculation platform with the inclusion of many-body corrections to evaluate the detailed physical properties of the Ce–H and La–H systems and to understand the structure, stability, and superconductivity of these systems at ultra-high pressure. We provide a practical approach to further investigate conventional superconductivity in hydrogen-rich superhydrides. We report that density functional theory provides accurate structure and phonon frequencies, but many-body corrections lead to an increase of the critical temperature, which is associated with the spectral weight transfer of the f-states.

2022 ◽  
Vol 13 (1) ◽  
Hailan Luo ◽  
Qiang Gao ◽  
Hongxiong Liu ◽  
Yuhao Gu ◽  
Dingsong Wu ◽  

AbstractThe Kagome superconductors AV3Sb5 (A = K, Rb, Cs) have received enormous attention due to their nontrivial topological electronic structure, anomalous physical properties and superconductivity. Unconventional charge density wave (CDW) has been detected in AV3Sb5. High-precision electronic structure determination is essential to understand its origin. Here we unveil electronic nature of the CDW phase in our high-resolution angle-resolved photoemission measurements on KV3Sb5. We have observed CDW-induced Fermi surface reconstruction and the associated band folding. The CDW-induced band splitting and the associated gap opening have been revealed at the boundary of the pristine and reconstructed Brillouin zones. The Fermi surface- and momentum-dependent CDW gap is measured and the strongly anisotropic CDW gap is observed for all the V-derived Fermi surface. In particular, we have observed signatures of the electron-phonon coupling in KV3Sb5. These results provide key insights in understanding the nature of the CDW state and its interplay with superconductivity in AV3Sb5 superconductors.

2022 ◽  
Vol 13 (1) ◽  
Philipp Kurzhals ◽  
Geoffroy Kremer ◽  
Thomas Jaouen ◽  
Christopher W. Nicholson ◽  
Rolf Heid ◽  

AbstractElectron-phonon coupling, i.e., the scattering of lattice vibrations by electrons and vice versa, is ubiquitous in solids and can lead to emergent ground states such as superconductivity and charge-density wave order. A broad spectral phonon line shape is often interpreted as a marker of strong electron-phonon coupling associated with Fermi surface nesting, i.e., parallel sections of the Fermi surface connected by the phonon momentum. Alternatively broad phonons are known to arise from strong atomic lattice anharmonicity. Here, we show that strong phonon broadening can occur in the absence of both Fermi surface nesting and lattice anharmonicity, if electron-phonon coupling is strongly enhanced for specific values of electron-momentum, k. We use inelastic neutron scattering, soft x-ray angle-resolved photoemission spectroscopy measurements and ab-initio lattice dynamical and electronic band structure calculations to demonstrate this scenario in the highly anisotropic tetragonal electron-phonon superconductor YNi2B2C. This new scenario likely applies to a wide range of compounds.

2022 ◽  
Vol 13 (1) ◽  
Emre Ergeçen ◽  
Batyr Ilyas ◽  
Dan Mao ◽  
Hoi Chun Po ◽  
Mehmet Burak Yilmaz ◽  

AbstractIn van der Waals (vdW) materials, strong coupling between different degrees of freedom can hybridize elementary excitations into bound states with mixed character1–3. Correctly identifying the nature and composition of these bound states is key to understanding their ground state properties and excitation spectra4,5. Here, we use ultrafast spectroscopy to reveal bound states of d-orbitals and phonons in 2D vdW antiferromagnet NiPS3. These bound states manifest themselves through equally spaced phonon replicas in frequency domain. These states are optically dark above the Néel temperature and become accessible with magnetic order. By launching this phonon and spectrally tracking its amplitude, we establish the electronic origin of bound states as localized d–d excitations. Our data directly yield electron-phonon coupling strength which exceeds the highest known value in 2D systems6. These results demonstrate NiPS3 as a platform to study strong interactions between spins, orbitals and lattice, and open pathways to coherent control of 2D magnets.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 522
Shubo Wei ◽  
Hanyu Liu

Generally, pressure is a useful tool to modify the behavior of physical properties of materials due to the change in distance between atoms or molecules in the lattice. Barium iodide (BaI2), as one of the simplest and most prototypical iodine compounds, has substantial high pressure investigation value. In this work, we explored the crystal structures of BaI2 at a wide pressure range of 0–200 GPa using a global structure search methodology. A thermodynamical structure with tetragonal I4/mmm symmetry of BaI2 was predicted to be stable at 17.1 GPa. Further electronic calculations indicated that I4/mmm BaI2 exhibits the metallic feature via an indirect band gap closure under moderate pressure. We also found that the superconductivity of BaI2 at 30 GPa is much lower than that of CsI at 180 GPa based on our electron–phonon coupling simulations. Our current simulations provide a step toward the further understanding of the high-pressure behavior of iodine compounds at extreme conditions.

2022 ◽  
Vol 119 (3) ◽  
pp. e2113967119
Laurent P. René de Cotret ◽  
Martin R. Otto ◽  
Jan-Hendrik Pöhls ◽  
Zhongzhen Luo ◽  
Mercouri G. Kanatzidis ◽  

SnSe is a layered material that currently holds the record for bulk thermoelectric efficiency. The primary determinant of this high efficiency is thought to be the anomalously low thermal conductivity resulting from strong anharmonic coupling within the phonon system. Here we show that the nature of the carrier system in SnSe is also determined by strong coupling to phonons by directly visualizing polaron formation in the material. We employ ultrafast electron diffraction and diffuse scattering to track the response of phonons in both momentum and time to the photodoping of free carriers across the bandgap, observing the bimodal and anisotropic lattice distortions that drive carrier localization. Relatively large (18.7 Å), quasi-one-dimensional (1D) polarons are formed on the 300-fs timescale with smaller (4.2 Å) 3D polarons taking an order of magnitude longer (4 ps) to form. This difference appears to be a consequence of the profoundly anisotropic electron–phonon coupling in SnSe, with strong Fröhlich coupling only to zone-center polar optical phonons. These results demonstrate a high density of polarons in SnSe at optimal doping levels. Strong electron-phonon coupling is critical to the thermoelectric performance of this benchmark material and, potentially, high performance thermoelectrics more generally.

2022 ◽  
Yong Wang ◽  
Yixin Zhao ◽  
Feng Gao ◽  
Haoran Chen ◽  
Yingping fan ◽  

Although pure formamidinium iodide perovskite (FAPbI3) possesses an optimal gap for photovoltaics, their poor phase stability limits the long-term operational stability of the devices. A promising approach to enhance their phase stability is to incorporate cesium into FAPbI3. However, state-of-the-art formamidinium-cesium (FA-Cs) iodide perovskites demonstrate much worse efficiency compared with FAPbI3, limited by different crystallization dynamics of formamidinium and cesium, which result in poor composition homogeneity and high trap densities. We develop a novel strategy of crystallization decoupling processes of formamidinium and cesium via a sequential cesium incorporation approach. As such, we obtain highly reproducible and highly efficient solar cells based on FA1-xCsxPbI3 films, with uniform composition distribution and low defect densities. In addition, our cesium-incorporated perovskites demonstrate much enhanced stability compared with FAPbI3, as a result of suppressed ionic migration due to reduced electron-phonon coupling.

Zhong-zhen Luo ◽  
Songting Cai ◽  
Shiqiang Hao ◽  
Trevor Bailey ◽  
Yubo Luo ◽  

Although Ga doping can weaken the electron phonon coupling of n-type PbTe, Ga-doped PbTe has a relatively low carrier concentration (n) and high lattice thermal conductivity (κlat), resulting in a...

Sign in / Sign up

Export Citation Format

Share Document