Expression pattern of zygote arrest 1 (ZAR1), maternal antigen that embryo requires (MATER), growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) genes in ovine oocytes and in vitro-produced preimplantation embryos

2008 ◽  
Vol 20 (8) ◽  
pp. 908 ◽  
Author(s):  
Daniela Bebbere ◽  
Luisa Bogliolo ◽  
Federica Ariu ◽  
Stefano Fois ◽  
Giovanni Giuseppe Leoni ◽  
...  

The expression patterns of four maternal effect genes (MEG), namely zygote arrest 1 (ZAR1), maternal antigen that embryo requires (MATER), growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), were determined in ovine oocytes and in vitro-produced preimplantation embryos. The existence of ZAR1 and MATER in ovine species has not been reported previously. Reverse transcription–polymerase chain reaction was performed on germinal vesicle and IVM MII oocytes, as well as in in vitro fertilised and cultured two-, four-, eight- and 12/16-cell embryos, morulae and blastocysts. Quantification of gene expression by real-time polymerase chain reaction showed the highest abundance of all transcripts analysed in the immature oocyte. During the following stages of preimplantation development, the mRNAs examined exhibited different patterns of expression, but often significant decreases were observed during maturation and maternal–embryonic transition. The transcription of the four genes did not resume with activation of the genome.


2018 ◽  
Vol 54 (2) ◽  
pp. 373-380 ◽  
Author(s):  
Pablo Garcia ◽  
Karla Aspee ◽  
Georges Ramirez ◽  
Phillip Dettleff ◽  
Jaime Palomino ◽  
...  


Reproduction ◽  
2005 ◽  
Vol 129 (4) ◽  
pp. 481-487 ◽  
Author(s):  
Kenneth P McNatty ◽  
Jennifer L Juengel ◽  
Karen L Reader ◽  
Stan Lun ◽  
Samu Myllymaa ◽  
...  

The oocyte-secreted polypeptide growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15, also known as GDF9B) have both been shown to be essential for ovarian follicular development and ovulation rate. In addition, it is known from both in vivo and in vitro studies that these factors co-operate in some manner. To date, most studies examining the in vitro effects of these growth factors have used the rodent model. However, the evidence suggests that these growth factors have somewhat different roles between rodents and ruminants. Therefore, the objectives of these studies were to examine the effects of GDF9 and BMP15, alone and together, on the functions of ovine and bovine granulosa cells under in vitro conditions. Ovine (o)BMP15 given together with murine (m)GDF9 or oGDF9 was more potent in stimulating 3H-thymidine incorporation by ovine granulosa cells compared with each growth factor alone. For bovine granulosa cells, there appeared to be little or no co-operativity between oBMP15 and oGDF9 as oBMP15 alone was as potent as any combination of the two growth factors in stimulating 3H-thymidine uptake. The species of origin of GDF9 affected the progesterone response in ovine granulosa cells with mGDF9 stimulating and oGDF9 inhibiting progesterone production. Ovine BMP15 alone had no effect on progesterone production by ovine granulosa cells and these growth factors did not appear to co-operate. FSH-stimulated progesterone production by bovine granulosa cells was most potently inhibited when oBMP15 and murine or ovine GDF9 were administered together. As was observed for progesterone, the species of origin of GDF9 affected inhibin production by ovine granulosa cells where mGDF9 inhibited while oGDF9 stimulated production. Murine GDF9 also inhibited inhibin production from bovine granulosa cells. For both ovine and bovine granulosa cells, BMP15 alone had no effect on inhibin production and there did not appear to be any co-operation between GDF9 and BMP15. These results indicate that the effects of BMP15 and GDF9 varied with respect to the species of origin of the growth factor. Moreover, the effects of GDF9 and BMP15 together were often co-operative and not always the same as those observed for these growth factors alone.





Author(s):  
Guang-Xin E ◽  
Yong-Fu Huang ◽  
Jian-Ning He ◽  
Wei-Wei Ni ◽  
Yong-Ju Zhao

Bone morphogenetic protein 15 (BMP15) is crucial factor for ovulation as well as for increasing litter size. In the present investigation efforts had been carried out to assess the genetic variations in Exon 2 region of BMP15 in goat, using polymerase chain reaction single strand conformation polymorphism (PCR-SSCP) sequencing methods and cooperated frequency distribution to discuss its possibility of related fecundity. Across the 144samples from six breeds were identified in the A963G location of BMP15 using PCR-SSCP and sequences technology. A963A genotype was the most frequent (85.4%) and G963G was the least frequent with a frequency of 4.2% and A963G is 10.4%. It revealed non significant different between high and low fecundity breed. Therefore, this single nucleotide variant is not common Bio-Marker for fecundity in Goat.



Sign in / Sign up

Export Citation Format

Share Document