Analysis of SINE and LINE repeat content of Y chromosomes in the platypus, Ornithorhynchus anatinus

2009 ◽  
Vol 21 (8) ◽  
pp. 964 ◽  
Author(s):  
R. Daniel Kortschak ◽  
Enkhjargal Tsend-Ayush ◽  
Frank Grützner

Monotremes feature an extraordinary sex-chromosome system that consists of five X and five Y chromosomes in males. These sex chromosomes share homology with bird sex chromosomes but no homology with the therian X. The genome of a female platypus was recently completed, providing unique insights into sequence and gene content of autosomes and X chromosomes, but no Y-specific sequence has so far been analysed. Here we report the isolation, sequencing and analysis of ~700 kb of sequence of the non-recombining regions of Y2, Y3 and Y5, which revealed differences in base composition and repeat content between autosomes and sex chromosomes, and within the sex chromosomes themselves. This provides the first insights into repeat content of Y chromosomes in platypus, which overall show similar patterns of repeat composition to Y chromosomes in other species. Interestingly, we also observed differences between the various Y chromosomes, and in combination with timing and activity patterns we provide an approach that can be used to examine the evolutionary history of the platypus sex-chromosome chain.


2009 ◽  
Vol 21 (8) ◽  
pp. 976 ◽  
Author(s):  
Tasman Daish ◽  
Aaron Casey ◽  
Frank Grützner

Monotremes are phylogenetically and phenotypically unique animals with an unusually complex sex chromosome system that is composed of ten chromosomes in platypus and nine in echidna. These chromosomes are alternately linked (X1Y1, X2Y2, …) at meiosis via pseudoautosomal regions and segregate to form spermatozoa containing either X or Y chromosomes. The physical and epigenetic mechanisms involved in pairing and assembly of the complex sex chromosome chain in early meiotic prophase I are completely unknown. We have analysed the pairing dynamics of specific sex chromosome pseudoautosomal regions in platypus spermatocytes during prophase of meiosis I. Our data show a highly coordinated pairing process that begins at the terminal Y5 chromosome and completes with the union of sex chromosomes X1Y1. The consistency of this ordered assembly of the chain is remarkable and raises questions about the mechanisms and factors that regulate the differential pairing of sex chromosomes and how this relates to potential meiotic silencing mechanisms and alternate segregation.



2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Laura Ghigliotti ◽  
C.-H. Christina Cheng ◽  
Céline Bonillo ◽  
Jean-Pierre Coutanceau ◽  
Eva Pisano

Two genes, that is, 5S ribosomal sequences and antifreeze glycoprotein (AFGP) genes, were mapped onto chromosomes of eight Antarctic notothenioid fish possessing a X1X1X2X2/X1X2Y sex chromosome system, namely,Chionodraco hamatusandPagetopsis macropterus(family Channichthyidae),Trematomus hansoni,T. newnesi,T. nicolai,T. lepidorhinus, andPagothenia borchgrevinki(family Nototheniidae), andArtedidraco skottsbergi(family Artedidraconidae). Through fluorescencein situhybridization (FISH), we uncovered distinct differences in the gene content of the Y chromosomes in the eight species, withC. hamatusandP. macropterusstanding out among others in bearing 5S rDNA and AFGP sequences on their Y chromosomes, respectively. Both genes were absent from the Y chromosomes of any analyzed species. The distinct patterns of Y and non-Y chromosome association of the 5S rDNA and AFGP genes in species representing different Antarctic fish families support an independent origin of the sex heterochromosomes in notothenioids with interesting implications for the evolutionary/adaptational history of these fishes living in a cold-stable environment.



2011 ◽  
Vol 80 (2) ◽  
pp. 93-97 ◽  
Author(s):  
Dagmara Kwolek ◽  
Andrzej J. Joachimiak

Sex-ratio bias in seeds of dioecious <em>Rumex</em> species with sex chromosomes is an interesting and still unsettled issue. To resolve gender among seeds of <em>R. acetosa</em> and <em>R. thyrsiflorus</em> (two species with an XX/XY1Y2 sex chromosome system), this work applied a PCR-based method involving DNA markers located on Y chromosomes. Both species showed female-biased primary sex ratios, with female bias greater in <em>R. acetosa</em> than in <em>R. thyrsiflorus</em>. The observed predominance of female seeds is consistent with the view that the female biased sex ratios in <em>Rumex </em>are conditioned not only postzygotically but also prezygotically.



Author(s):  
R. J McKinlay Gardner ◽  
David J Amor

The sex chromosomes (gonosomes) are different, and sex chromosome translocations need to be considered separately from translocations between autosomes. A sex chromosome can engage in translocation with an autosome, with the other sex chromosome, or even with its homolog. The qualities of the sex chromosomes have unique implications in terms of the genetic functioning of gonosome-autosome translocations. This chapter acknowledges the specific peculiarities that the sex chromosomes imply: the X being subject to transcriptional silencing; and the very small Y gene complement being confined largely to sex-determining loci. It reviews translocations between sex chromosomes and autosomes; between X and Y chromosomes; and even the very rare circumstance of between X chromosomes and between Y chromosomes. The differences in assessing risk, according to chromosome form, in comparison with the autosomal translocation, are reviewed, and the biology behind these differences is discussed.



1982 ◽  
Vol 58 (1) ◽  
pp. 411-422
Author(s):  
R. Benavente ◽  
R. Wettstein ◽  
M. Papa

An ultrastructural study was performed on the sex chromosomes (male X1X2X3O) during the spermatogenesis of Tegenaria domestica (Arachnida, Agelenidae). This study was carried out using random and serially cut sections. During pachytene and diplotene the three X chromosomes are longitudinally paired. Each of these consists of a central core of condensed chromatin, surrounded by a field of dense chromatin projections through which the chromosomes are in contact with one another. These projections may be responsible for the recognition and pairing of the sex chromosomes and in some way participate in their non-disjunction during anaphase I. A study of the structure and behaviour of the sex chromosomes during spermatogenesis is also presented. The available information on non-synaptonemal complex-mediated chromosome pairing and a systematization of sex chromosome structure in spiders are discussed.



Genome ◽  
2002 ◽  
Vol 45 (2) ◽  
pp. 243-252 ◽  
Author(s):  
Aleksandra Grabowska-Joachimiak ◽  
Andrzej Joachimiak

Mitotic metaphase chromosomes of Silene latifolia (white campion) and Silene dioica (red campion) were studied and no substantial differences between the conventional karyotypes of these two species were detected. The classification of chromosomes into three distinct groups proposed for S. latifolia by Ciupercescu and colleagues was considered and discussed. Additionally, a new small satellite on the shorter arm of homobrachial chromosome 5 was found. Giemsa C-banded chromosomes of the two analysed species show many fixed and polymorphic heterochromatic bands, mainly distally and centromerically located. Our C-banding studies provided an opportunity to better characterize the sex chromosomes and some autosome types, and to detect differences between the two Silene karyotypes. It was shown that S. latifolia possesses a larger amount of polymorphic heterochromatin, especially of the centromeric type. The two Silene sex chromosomes are easily distinguishable not only by length or DNA amount differences but also by their Giemsa C-banding patterns. All Y chromosomes invariably show only one distally located band, and no other fixed or polymorphic bands on this chromosome were observed in either species. The X chromosomes possess two terminally located fixed bands, and some S. latifolia X chromosomes also have an extra-centric segment of variable length. The heterochromatin amount and distribution revealed by our Giemsa C-banding studies provide a clue to the problem of sex chromosome and karyotype evolution in these two closely related dioecious Silene species.Key words: dioecious plant, Silene dioica, Silene latifolia, karyotype, sex chromosomes, heterochromatin, C-banding.



1982 ◽  
Vol 60 (11) ◽  
pp. 2866-2878 ◽  
Author(s):  
William S. Procunier

Cytological descriptions and phylogenetic relationships are presented for the genus Cnephia s. str. All members are male achiasmate. Cnephia lapponica is unique in that its basic chromosome complement is reduced from n = 3 to n = 2 metacentrics as a result of a fusion of chromosomes II and III. Sex chromosome differentiation varies from nonobservable in C. ornithophilia and C. eremites through C. pecuarum in which the standard and IS-5 sequences are distributed differentially over X and Y chromosomes, to the polytypic system of C. lapponica in which the X chromosome is fixed for expression of the nucleolar organizer (NO) and the Y chromosome for nonexpression. Further, in a Norwegian population of C. lapponica, males are additionally interchange heterozygotes. Thus, a multiple sex chromosome system exists in which all the chromosomes are sex chromosomes. Closest members occur sympatrically and differ by sex chromosomes and at least one fixed inversion; more distant taxa differ by a number of fixed inversions as well as sex chromosomes. The identical bands 17B and 24C, which appear in a thin or enhanced form, are polymorphic, sex-linked, fixed, or lost in different members of the group. This study supports a model for sympatric speciation.



Genome ◽  
1989 ◽  
Vol 32 (4) ◽  
pp. 522-530
Author(s):  
Fiona F. Hunter

To test whether Simulium furculatum (Shewell) belongs to the Simulium vernum (Macquart) species-group, a comparison was made of the polytene chromosomes of S. furculatum and the S. vernum "Knebworth" standard. Only two chromosome arms (of six) could be completely analysed. It is argued that S. furculatum does not belong to the S. vernum species-group. A complex sex-chromosome system (X1, X2, Y1) is found in both eastern and western Canada. Phylogenetically, the single Y chromosome is intermediate between the two X chromosomes. Intraspecific inversion polymorphisms, which serve to differentiate eastern from western populations, are also identified. Only one sibling is indicated.Key words: black flies, Simulium furculatum, Simulium vernum, cytotaxonomy, polytene chromosomes, sex chromosomes.



2016 ◽  
Vol 149 (4) ◽  
pp. 282-289 ◽  
Author(s):  
Michail Rovatsos ◽  
Martina Johnson Pokorná ◽  
Marie Altmanová ◽  
Lukáš Kratochvíl

Geckos in general show extensive variability in sex determining systems, but only male heterogamety has been demonstrated in the members of their legless family Pygopodidae. In the pioneering study published more than 45 years ago, multiple sex chromosomes of the type X1X1X2X2/X1X2Y were described in Burton's legless lizard (Lialisburtonis) based on conventional cytogenetic techniques. We conducted cytogenetic analyses including comparative genomic hybridization and fluorescence in situ hybridization (FISH) with selected cytogenetic markers in this species and the previously cytogenetically unstudied Papua snake lizard (Lialis jicari) to better understand the nature of these sex chromosomes and their differentiation. Both species possess male heterogamety with an X1X1X2X2/X1X2Y sex chromosome system; however, the Y and one of the X chromosomes are not small chromosomes as previously reported in L. burtonis, but the largest macrochromosomal pair in the karyotype. The Y chromosomes in both species have large heterochromatic blocks with extensive accumulations of GATA and AC microsatellite motifs. FISH with telomeric probe revealed an exclusively terminal position of telomeric sequences in L. jicari (2n = 42 chromosomes in females), but extensive interstitial signals, potentially remnants of chromosomal fusions, in L.burtonis (2n = 34 in females). Our study shows that even largely differentiated and heteromorphic sex chromosomes might be misidentified by conventional cytogenetic analyses and that the application of more sensitive cytogenetic techniques for the identification of sex chromosomes is beneficial even in the classical examples of multiple sex chromosomes.



Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1317-1328 ◽  
Author(s):  
Bryant F McAllister

Abstract Sex chromosomes originate from pairs of autosomes that acquire controlling genes in the sex-determining cascade. Universal mechanisms apparently influence the evolution of sex chromosomes, because this chromosomal pair is characteristically heteromorphic in a broad range of organisms. To examine the pattern of initial differentiation between sex chromosomes, sequence analyses were performed on a pair of newly formed sex chromosomes in Drosophila americana. This species has neo-sex chromosomes as a result of a centromeric fusion between the X chromosome and an autosome. Sequences were analyzed from the Alcohol dehydrogenase (Adh), big brain (bib), and timeless (tim) gene regions, which represent separate positions along this pair of neo-sex chromosomes. In the northwestern range of the species, the bib and Adh regions exhibit significant sequence differentiation for neo-X chromosomes relative to neo-Y chromosomes from the same geographic region and other chromosomal populations of D. americana. Furthermore, a nucleotide site defining a common haplotype in bib is shown to be associated with a paracentric inversion [In(4)ab] on the neo-X chromosome, and this inversion suppresses recombination between neo-X and neo-Y chromosomes. These observations are consistent with the inversion acting as a recombination modifier that suppresses exchange between these neo-sex chromosomes, as predicted by models of sex chromosome evolution.



Sign in / Sign up

Export Citation Format

Share Document