pseudoautosomal regions
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Mattisson ◽  
Marcus Danielsson ◽  
Maria Hammond ◽  
Hanna Davies ◽  
Caroline J. Gallant ◽  
...  

AbstractMosaic loss of chromosome Y (LOY) in immune cells is a male-specific mutation associated with increased risk for morbidity and mortality. The CD99 gene, positioned in the pseudoautosomal regions of chromosomes X and Y, encodes a cell surface protein essential for several key properties of leukocytes and immune system functions. Here we used CITE-seq for simultaneous quantification of CD99 derived mRNA and cell surface CD99 protein abundance in relation to LOY in single cells. The abundance of CD99 molecules was lower on the surfaces of LOY cells compared with cells without this aneuploidy in all six types of leukocytes studied, while the abundance of CD proteins encoded by genes located on autosomal chromosomes were independent from LOY. These results connect LOY in single cells with immune related cellular properties at the protein level, providing mechanistic insight regarding disease vulnerability in men affected with mosaic chromosome Y loss in blood leukocytes.


2021 ◽  
Vol 376 (1833) ◽  
pp. 20200099
Author(s):  
Artem P. Lisachov ◽  
Katerina V. Tishakova ◽  
Svetlana A. Romanenko ◽  
Anna S. Molodtseva ◽  
Dmitry Yu. Prokopov ◽  
...  

Whole-chromosome fusions play a major role in the karyotypic evolution of reptiles. It has been suggested that certain chromosomes tend to fuse with sex chromosomes more frequently than others. However, the comparative genomic synteny data are too scarce to draw strong conclusions. We obtained and sequenced chromosome-specific DNA pools of Sceloporus malachiticus , an iguanian species which has experienced many chromosome fusions. We found that four of seven lineage-specific fusions involved sex chromosomes, and that certain syntenic blocks which constitute the sex chromosomes, such as the homologues of the Anolis carolinensis chromosomes 11 and 16, are repeatedly involved in sex chromosome formation in different squamate species. To test the hypothesis that the karyotypic shift could be associated with changes in recombination patterns, we performed a synaptonemal complex analysis in this species and in Sceloporus variabilis (2 n = 34). It revealed that the sex chromosomes in S. malachiticus had two distal pseudoautosomal regions and a medial differentiated region. We found that multiple fusions little affected the recombination rate in S. malachiticus . Our data confirm more frequent involvement of certain chromosomes in sex chromosome formation, but do not reveal a connection between the gonosome–autosome fusions and the evolution of recombination rate. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)’.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Rie Kawamura ◽  
Hidehito Inagaki ◽  
Midori Yamada ◽  
Fumihiko Suzuki ◽  
Yuki Naru ◽  
...  

Abstract Background Constitutional telomeric associations are very rare events and the mechanism underlying their development is not well understood. Case presentation We here describe a female case of Turner syndrome with a 45,X,add(22)(p11.2)[25]/45,X[5]. We reconfirmed this karyotype by FISH analysis as 45,X,dic(Y;22)(p11.3;p11.2)[28]/45,X[2].ish dic(Y;22)(SRY+,DYZ1+). A possible mechanism underlying this mosaicism was a loss of dic(Y;22) followed by a monosomy rescue of chromosome 22. However, SNP microarray analysis revealed no loss of heterozygosity (LOH) in chromosome 22, although a mosaic pattern of LOH was clearly detectable at the pseudoautosomal regions of the sex chromosomes. Conclusions Our results suggest that the separation of the dicentric chromosome at the junction resulted in a loss of chromosome Y without a loss of chromosome 22, leading to this patient’s unique mosaicism. Although telomere signals were not detected by FISH at the junction, it is likely that the original dic(Y;22) chromosome was generated by unstable telomeric associations. We propose a novel “pulled apart” mechanism as the process underlying this mosaicism.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009532
Author(s):  
Bruno Monteiro ◽  
Miguel Arenas ◽  
Maria João Prata ◽  
António Amorim

Recombination between the X and Y human sex chromosomes is limited to the two pseudoautosomal regions (PARs) that present quite distinct evolutionary origins. Despite the crucial importance for male meiosis, genetic diversity patterns and evolutionary dynamics of these regions are poorly understood. In the present study, we analyzed and compared the genetic diversity of the PAR regions using publicly available genomic sequences encompassing both PAR1 and PAR2. Comparisons were performed through allele diversities, linkage disequilibrium status and recombination frequencies within and between X and Y chromosomes. In agreement with previous studies, we confirmed the role of PAR1 as a male-specific recombination hotspot, but also observed similar characteristic patterns of diversity in both regions although male recombination occurs at PAR2 to a much lower extent (at least one recombination event at PAR1 and in ≈1% in normal male meioses at PAR2). Furthermore, we demonstrate that both PARs harbor significantly different allele frequencies between X and Y chromosomes, which could support that recombination is not sufficient to homogenize the pseudoautosomal gene pool or is counterbalanced by other evolutionary forces. Nevertheless, the observed patterns of diversity are not entirely explainable by sexually antagonistic selection. A better understanding of such processes requires new data from intergenerational transmission studies of PARs, which would be decisive on the elucidation of PARs evolution and their role in male-driven heterosomal aneuploidies.


2020 ◽  
Vol 37 (12) ◽  
pp. 3550-3562 ◽  
Author(s):  
Deborah Charlesworth ◽  
Yexin Zhang ◽  
Roberta Bergero ◽  
Chay Graham ◽  
Jim Gardner ◽  
...  

Abstract Genetic and physical mapping of the guppy (Poecilia reticulata) have shown that recombination patterns differ greatly between males and females. Crossover events occur evenly across the chromosomes in females, but in male meiosis they are restricted to the tip furthest from the centromere of each chromosome, creating very high recombination rates per megabase, as in pseudoautosomal regions of mammalian sex chromosomes. We used GC content to indirectly infer recombination patterns on guppy chromosomes, based on evidence that recombination is associated with GC-biased gene conversion, so that genome regions with high recombination rates should be detectable by high GC content. We used intron sequences and third positions of codons to make comparisons between sequences that are matched, as far as possible, and are all probably under weak selection. Almost all guppy chromosomes, including the sex chromosome (LG12), have very high GC values near their assembly ends, suggesting high recombination rates due to strong crossover localization in male meiosis. Our test does not suggest that the guppy XY pair has stronger crossover localization than the autosomes, or than the homologous chromosome in the close relative, the platyfish (Xiphophorus maculatus). We therefore conclude that the guppy XY pair has not recently undergone an evolutionary change to a different recombination pattern, or reduced its crossover rate, but that the guppy evolved Y-linkage due to acquiring a male-determining factor that also conferred the male crossover pattern. We also identify the centromere ends of guppy chromosomes, which were not determined in the genome assembly.


Nature ◽  
2020 ◽  
Vol 585 (7823) ◽  
pp. 79-84 ◽  
Author(s):  
Karen H. Miga ◽  
Sergey Koren ◽  
Arang Rhie ◽  
Mitchell R. Vollger ◽  
Ariel Gershman ◽  
...  

AbstractAfter two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no single chromosome has been finished end to end, and hundreds of unresolved gaps persist1,2. Here we present a human genome assembly that surpasses the continuity of GRCh382, along with a gapless, telomere-to-telomere assembly of a human chromosome. This was enabled by high-coverage, ultra-long-read nanopore sequencing of the complete hydatidiform mole CHM13 genome, combined with complementary technologies for quality improvement and validation. Focusing our efforts on the human X chromosome3, we reconstructed the centromeric satellite DNA array (approximately 3.1 Mb) and closed the 29 remaining gaps in the current reference, including new sequences from the human pseudoautosomal regions and from cancer-testis ampliconic gene families (CT-X and GAGE). These sequences will be integrated into future human reference genome releases. In addition, the complete chromosome X, combined with the ultra-long nanopore data, allowed us to map methylation patterns across complex tandem repeats and satellite arrays. Our results demonstrate that finishing the entire human genome is now within reach, and the data presented here will facilitate ongoing efforts to complete the other human chromosomes.


2020 ◽  
Author(s):  
T Chae ◽  
A Harkess ◽  
RC Moore

ABSTRACTOne evolutionary path from hermaphroditism to dioecy is via a gynodioecious intermediate. The evolution of dioecy may also coincide with the formation of sex chromosomes that possess sex-determining loci that are physically linked in a region of suppressed recombination. Dioecious papaya (Carica papaya) has an XY chromosome system, where the presence of a Y chromosome determines males. However, in cultivation, papaya is gynodioecious, due to the conversion of the male Y chromosome to a hermaphroditic Yh chromosome during its domestication. We investigated gene expression linked to the X, Y, and Yh chromosomes at different floral developmental stages in order to identify differentially expressed genes (DEGs) that may be involved in the sexual reversion of males to hermaphrodites. We identified 309 sex-biased genes found on the sex chromosomes, most of which are found in the pseudoautosomal regions (PARs). Female (XX) expression in the sex determining region (SDR) was almost double that of X-linked expression in males (XY) and hermaphrodites (XYh), which rules out dosage compensation for most sex-linked gene; although, an analysis of hemizygous X-linked loci found evidence of partial dosage compensation. Furthermore, we identified a potential candidate gene associated with both sex determination and the transition to hermaphroditism, a homolog of the MADS-box protein SHORT VEGETATIVE PHASE (SVG).


2020 ◽  
Author(s):  
Artem P. Lisachov ◽  
Katerina V. Tishakova ◽  
Svetlana A. Romanenko ◽  
Anna S. Molodtseva ◽  
Dmitry Yu. Prokopov ◽  
...  

AbstractThere is a growing body of evidence that the common ancestor of vertebrates had a bimodal karyotype, i.e. consisting of large macrochromosomes and small microchromosomes. This type of karyotype organization is preserved in most reptiles. However, certain species independently experience microchromosome fusions. The evolutionary forces behind this are unclear. We investigated the karyotype of the green spiny lizard, Sceloporus malachiticus, an iguana species which has 2n=22, whereas the ancestral karyotype of iguanas had 2n=36. We obtained and sequenced flow-sorted chromosome-specific DNA samples and found that most of the microchromosome fusions in this species involved sex chromosomes. We found that certain ancestral squamate chromosomes, such as the homologue of the Anolis carolinensis chromosome 11, are repeatedly involved in sex chromosome formation in different species. To test the hypothesis that the karyotypic shift could be associated with changes in recombination patterns, and to study sex chromosome synapsis and recombination in meiosis, we performed synaptonemal complex analysis in this species and in S. variabilis, a related species with 2n=34. We found that in the species studied the recombination patterns correlate more with phylogeny than with the structure of the karyotype. The sex chromosomes had two distal pseudoautosomal regions and a medial differentiated region.


2020 ◽  
Vol 37 (5) ◽  
pp. 1243-1258 ◽  
Author(s):  
Stephan Maxeiner ◽  
Fritz Benseler ◽  
Gabriela Krasteva-Christ ◽  
Nils Brose ◽  
Thomas C Südhof

Abstract Variants in genes encoding synaptic adhesion proteins of the neuroligin family, most notably neuroligin-4, are a significant cause of autism spectrum disorders in humans. Although human neuroligin-4 is encoded by two genes, NLGN4X and NLGN4Y, that are localized on the X-specific and male-specific regions of the two sex chromosomes, the chromosomal localization and full genomic sequence of the mouse Nlgn4 gene remain elusive. Here, we analyzed the neuroligin-4 genes of numerous rodent species by direct sequencing and bioinformatics, generated complete drafts of multiple rodent neuroligin-4 genes, and examined their evolution. Surprisingly, we find that the murine Nlgn4 gene is localized to the pseudoautosomal region (PAR) of the sex chromosomes, different from its human orthologs. We show that the sequence differences between various neuroligin-4 proteins are restricted to hotspots in which rodent neuroligin-4 proteins contain short repetitive sequence insertions compared with neuroligin-4 proteins from other species, whereas all other protein sequences are highly conserved. Evolutionarily, these sequence insertions initiate in the clade eumuroidea of the infraorder myomorpha and are additionally associated with dramatic changes in noncoding sequences and gene size. Importantly, these changes are not exclusively restricted to neuroligin-4 genes but reflect major evolutionary changes that substantially altered or even deleted genes from the PARs of both sex chromosomes. Our results show that despite the fact that the PAR in rodents and the neuroligin-4 genes within the rodent PAR underwent massive evolutionary changes, neuroligin-4 proteins maintained a highly conserved core structure, consistent with a substantial evolutionary pressure preserving its physiological function.


Sign in / Sign up

Export Citation Format

Share Document