scholarly journals 158APOPTOSIS IN IN VITRO PRODUCED BOVINE EMBRYOS ACCORDING TO DEVELOPMENTAL KINETICS

2004 ◽  
Vol 16 (2) ◽  
pp. 201 ◽  
Author(s):  
F.V. Meirelles ◽  
K.L. Schwarz ◽  
G.K.F. Merighe ◽  
S.F. Carambula ◽  
Y.F. Watanabe

Apoptosis has been previously reported in embryos during late pre-implantation development. Fast-developing embryos are known to present higher developmental competence. The aim of the present work was to evaluate the quality of in vitro-produced bovine embryos with fast (8-cells at 48 hours post-insemination (hpi) and slow (8-cells at 90hpi) cleavage and study the correlation of this phenotype with programmed cell death occurrences. Embryos were produced from immature oocytes obtained from slaughtered cow ovaries, after maturation and fertilization, presumed zygotes were cultured in CR2 medium with 10% FCS, together with granulosa cells under 5% CO2 atmosphere. The number of nuclei in the inner cell mass and trophectoderm (ICM/TE), as well as the number of nuclei with fragmented DNA, were estimated by applying differential staining and TUNEL, respectively; data were analyzed by ANOVA (JMP—SAS Institute). To test the expression of apoptosis regulating genes, a pool of fifty 8-cell embryos from each group (fast and slow) were collected. After RNA extraction and reverse transcriptase reaction, cDNA was amplified with Bax and Bcl2 primers, individually. Results indicated, as expected, higher quality in fast-cleaving embryos, estimated by the number of ICM nuclei (20.8±1.4 and 15.6±2.1—P≤0.05); however, the number of TE didn’t show significant differences (54.9±2.4 and 53.2±3.8); the same was observed for total cell number (75.7±2.8 and 68.8±4.4). The frequency of blastocyst TUNEL-positive nuclei as an estimate of total cell number was significantly larger in the slow group when compared to the rapid development group (19.0±2.5% and 8.5±1.4%, respectively, P≤0.05). The greater proportion of morphologic abnormal nuclei in both groups was located in the ICM, and may explain the lower number of ICM nuclei in slow developing embryos. Hence, embryos of slow development show TUNEL-positive blastomeres at the 8-cell stage, but no fragmented nuclei were observed in embryos at 48hpi. Bax and Bcl2 cDNA amplification showed that both mRNAs were constitutively present at the 8-cell stage in both groups. It can be concluded that in vitro-produced bovine blastocysts, with slow development to the 8-cell stage, present lower quality compared with fast development homologues, estimated by mean number of ICM nuclei, as well as nuclei fragmentation in blastomeres (TUNEL-positive). There is a difference in fragmented nuclei proportion between both groups at the 8-cell stage, but this result may be biased by the numbers of hours in culture. It was possible to demonstrate the presence of mRNA for pro (Bax) and anti-apoptotic (Bcl2) genes in slow- and fast-developing embryos at the 8-cell stage, and the future determination of the ratio between these two transcripts may allow the evaluation of the participation of pre-transcriptional regulation of these genes on the induction of DNA fragmentation. Financial support: Grant 99/12351-3 FAPESP São Paulo, Brazil.

2010 ◽  
Vol 22 (1) ◽  
pp. 232
Author(s):  
M. D. Goissis ◽  
P. J. Ross ◽  
J. B. Cibelli

Derivation of true bovine embryonic stem cells (ESC), as defined by their capacity to form robust teratomas and/or contribute to the germ line in chimeras, has not been achieved despite several attempts. It is possible that failures to derive bonafide bovine ESC are due to the inability of bovine embryonic cells to adapt to in vitro culture conditions that favor ESC derivation. Wnt pathways are involved in pluripotency and self-renewal of mouse and human ESC. Wnt signaling is also required for implantation competence in mouse blastocysts. Given the shared developmental potential between inner cell mass (ICM) and ESC, we hypothesized that Wnt could act on the ICM of bovine embryos increasing its proliferation potential. The objective of this study was to evaluate the effect of post-embryonic genome activation Wnt3A supplementation on blastocyst formation and cell allocation to ICM and trophectoderm (TE). In vitro fertilized bovine embryos at Day 4 of culture in KSOM medium were divided into 3 treatments: Control, no co-culture; co-culture with regular mouse embryonic fibroblasts (MEF); and co-culture with mouse L fibroblasts overexpressing Wnt3A protein (L-Wnt3A, Willert et al. 2003 Nature 423, 448-452). Embryos were cultured until Day 8 when blastocyst and hatching rates were recorded. Then, embryos were submitted to differential staining of ICM and TE by brief exposure to 0.25% Triton X-100 in PBS and staining with bisbenzimide and propidium iodide. Six IVF replications were performed and a total of 39 embryos were counted: 11 for Control, 16 for MEF, and 12 for L-Wnt3A. Only intact embryos after processing were used for cell count. Statistical analysis was performed by ANOVA using PROC MIXED of SAS software (SAS Institute Inc., Cary, NC, USA) in which each IVF was considered as a block with Tukey’s adjustment for mean comparison of rates and Bonferroni adjustments for mean comparison of cell counts. Results for blastocyst rate, hatching rate, ICM, TE, and total cell number are presented in the table below. Different superscript letters within columns indicate significant statistical difference (P < 0.05). These results indicate that L-Wnt3A fibroblast co-culture exerts a positive effect on bovine embryo cell number, resulting in a larger number of ICM cells in bovine embryos, which could be beneficial for ESC derivation attempts. Table 1.Blastocyst and hatching rates, ICM, TE, and total cell number results


Development ◽  
1988 ◽  
Vol 102 (4) ◽  
pp. 793-803 ◽  
Author(s):  
V.E. Papaioannou ◽  
K.M. Ebert

Total cell number as well as differential cell numbers representing the inner cell mass (ICM) and trophectoderm were determined by a differential staining technique for preimplantation pig embryos recovered between 5 and 8 days after the onset of oestrus. Total cell number increased rapidly over this time span and significant effects were found between embryos of the same chronological age from different females. Inner cells could be detected in some but not all embryos of 12–16 cells. The proportion of inner cells was low in morulae but increased during differentiation of ICM and trophectoderm in early blastocysts. The proportion of ICM cells then decreased as blastocysts expanded and hatched. Some embryos were cultured in vitro and others were transferred to the oviducts of immature mice as a surrogate in vivo environment and assessed for morphology and cell number after several days. Although total cell number did not reach in vivo levels, morphological development and cell number increase was sustained better in the immature mice than in vitro. The proportion of ICM cells in blastocysts formed in vitro was in the normal range.


Zygote ◽  
1997 ◽  
Vol 5 (4) ◽  
pp. 309-320 ◽  
Author(s):  
Rabindranath de la Fuente ◽  
W. Allan King

SummaryThe mammalian blastocyst comprises an inner cell mass (ICM) and a trophectoderm cell layer. In this study the allocation of blastomeres to either cell lineage was compared between murine, porcine and bovine blastocysts. Chemical permeation of trophectoderm cells by the Ca2+ ionophore A23187 in combination with DNA-specific fluorochromes resulted in the differential staining of trophectoderm and ICM. Confocal microscopy confirmed the exclusive permeation of trophectoderm and the internal localisation of intact ICM cells in bovine blastocysts. Overall, differential cell counts were obtained in approximately 85% of the embryos assessed. Mean (±SEM) total cell numbers were 72.2 ± 3.1 and 93.1±5 for in vivo derived murine (n = 41) and porcine (n = 21) expanded blastocysts, respectively. Corresponding ICM cell number counts revealed ICM/total cell number ratios of 0.27 and 0.21, respectively. Comparison of in vivo (n = 20) and in vitro derived bovine embryos on day 8 (n = 29) or day 9 (n = 29) revealed a total cell number of 195.25±9.9, 166.14±9.9 and 105±6.7 at the expanded blastocyst stage with corresponding ICM/total cell ratios of 0.27, 0.23 and 0.23, respectively. While total cell numbers differed significantly among the three groups of bovine embryos (p<0.05), the ICM/total cell ratio did not. These results indicate that a similar proportion of cells is allocated to the ICM among blastocysts of genetically divergent species.


2006 ◽  
Vol 18 (2) ◽  
pp. 196
Author(s):  
M. Sakatani ◽  
I. Suda ◽  
T. Oki ◽  
S.-I. Kobayashi ◽  
S. Kobayashi ◽  
...  

Development of cleavage-stage pre-implantation embryos is disrupted by exposure to heat shock. Heat shock also increases intracellular reactive oxygen species (ROS) in pre-implantation embryos. Therefore, reduction of intracellular ROS levels might improve the development of heat-shocked embryos. Recently the antioxidative activities of polyphenols have been widely reported to reduce the oxidative stress. In this study, we investigated the effect of purple sweet potato anthocyanin, a kind of polyphenol that is a strong ROS scavenger, on development and intracellular redox status of bovine pre-implantation embryos exposed to heat shock. Experiment 1: In vitro-produced 8-16-cell-stage embryos on Day 2 after fertilization were exposed to 41.5�C for 6 h in CR1aa containing 0, 0.1, 1, and 10 �g/mL anthocyanin at 5% CO2, 5% O2, and 90% N2. After heat shock, embryos were cultured at 38.5�C at 5% CO2, 5% O2 until Day 8. On Day 8, the proportion of embryos developing to the blastocyst stage was evaluated. Blastocyst total cell number and the ratio between inner cell mass and tropheoderm were evaluated by differential staining. The experiment was replicated five times with more than 70 embryos used in each treatment. Experiment 2: Heat shock treatment of in vitro-produced 8-16-cell-stage embryos was carried out as described in experiment 1. After heat shock, intracellular ROS and glutathione (GSH) levels were measured in individual 8-16 cell stage embryos with fluorescent probes (22,72-dichlorodihydrofluorescein diacetate for ROS and CellTracker" Blue (Invitrogen Japan K. K., Tokyo, Japan) for GSH). The fluorescence emissions of each treatment were normalized to those of 8-16 cell stage embryos cultured at 38.5�C without anthocyanin to obtain the relative fluorescence emission. This experiment was replicated four times. Embryos treated with heat stress without anthocyanin (0 �g/mL) showed low development (14.6 � 3.6%) and blastocyst total cell number (88.2 � 9.4). However, embryos treated with 0.1 �g/mL anthocyanin improved development (31.7 � 4.5%, P < 0.05) and increased the total cell number (96.5 � 11.3). The higher concentrations of anthocyanin (1 and 10 �g/mL) did not affect development and cell number. The intracellular ROS levels in heat-shocked embryos were significantly reduced by all concentrations of anthocyanin (P < 0.05). In addition, anthocyanin increased GSH levels at all doses tested (P < 0.05). These results indicate that an appropriate concentration of anthocyanin improves development by regulating intracellular redox balance in bovine embryos exposed to heat shock.


2012 ◽  
Vol 24 (1) ◽  
pp. 161 ◽  
Author(s):  
B. K. Redel ◽  
L. D. Spate ◽  
A. N. Brown ◽  
R. S. Prather

It is vital that improvements are made to current culture environments because in vitro culture systems are suboptimal compared with in vivo. A previous transcriptional profiling endeavour conducted by Bauer et al. (2010 Biol. Reprod. 83, 791–798) identified hundreds of mRNA transcripts that were mis-expressed in porcine embryos fertilized in vivo and then cultured in vitro to Day 6 compared with in vivo Day-6 embryos. Enriched in the downregulated transcripts were 4 genes involved with the one carbon pool by folate KEGG pathway. This downregulation of genes involved with folate metabolism may illustrate an impaired folate homeostasis in embryos cultured in the current culture environment. The objective of this study was to determine the effects folate had on embryo development of in vitro fertilized embryos. Porcine cumulus–oocyte complexes were matured for 44 h in M199 supplemented with epidermal growth factor (EGF), FSH and LH. Oocytes with a visible polar body were selected and fertilized in modified tris buffered medium for 5 h and then placed into porcine zygote medium 3 with 0 mM, 0.2 mM, 0.4 mM and 0.8 mM folate to find the optimal concentration of folate. Twenty-eight hours post-fertilization, cleaved embryos were selected and moved into 25-μL drops of respective culture medium and cultured to Day 6 in a water-saturated atmosphere of 5% CO2, 5% O2, 90% N2, at 38.5°C. To determine the effect folate had on development, the blastocyst rate for each treatment group was measured. Results were log-transformed and analysed by using PROC GLM in SAS (SAS Institute Inc., Cary, NC). A least-significant difference post-test comparison was completed to determine if significant differences existed between treatment groups. The percentage of cleaved embryos on Day 6 that developed to blastocyst was 56.2%, 55.9%, 66.9% and 61.8% (n = 133, 149, 135 and 135) in 0 mM, 0.2 mM folate, 0.4 mM folate and 0.8 mM, respectively. The 0.4 mM folate group tended (P = 0.07) to have a higher number of cleaved embryos that developed to the blastocyst stage. Consequently, this concentration was used for all further embryo culture experiments. Differential staining was completed to compare the number of trophectoderm and inner cell mass nuclei for embryos cultured in 0 mM or 0.4 mM folate concentrations. Staining revealed that embryos cultured with folate had an increase in number of trophectoderm (29.7 ± 1.5 vs 24.4 ± 1.4 cells; P = 0.0058) and total cell (36.9 ± 1.0 vs 31.7 ± 1.0; P = 0.0007) numbers compared with embryos cultured without folate. These results illustrate that the addition of folate to current culture medium doesn't hinder development to blastocyst and by increasing trophectoderm and total cell number may give rise to better-quality in vitro-derived embryos. It is evident that using transcriptional profiling can be a great method of identifying ways to improve embryo culture systems and, in this case, supplementing with folate. Funded by Food for the 21st Century.


2016 ◽  
Vol 28 (2) ◽  
pp. 170
Author(s):  
L. D. Spate ◽  
B. K. Redel ◽  
R. S. Prather

Early porcine embryo metabolism in vitro is not completely understood. It has been suggested that before embryo genome activation (4-cell stage), the preferred energy source of the embryo is pyruvate. In our porcine zygote culture medium (MU1), the energy sources are 0.2 mM pyruvate and 2.0 mM calcium lactate. Three experiments were performed with in vitro-matured and IVF embryos to examine the effect on blastocyst development after withholding pyruvate and/or lactate during the first 48 h of culture. In Experiment 1, embryos were cultured without lactate for 48 and then cultured to Day 6 in control medium containing lactate. Control embryos were cultured in medium with lactate starting after fertilization to Day 6. All data were analysed by using SAS 9.3 with a GENMOD procedure used for the blastocyst data and a GLM procedure used for the cell number data. On Day 6, the percentage of embryos that formed blastocysts was 30.2% for control and 26.5% for embryos cultured for 48 h without lactate (n = 490, 4 replications). The difference was not significant P > 0.05. In Experiment 2, embryos were cultured without pyruvate for 48 and then cultured to Day 6 in control medium containing pyruvate. Control embryos were cultured in medium with pyruvate starting after fertilization to Day 6. On Day 6, the percentage of embryos that formed blastocysts was 31.1% for control and 30.5% for embryos cultured for 48 h without pyruvate (n = 385, 3 replications). In Experiment 3, embryos were cultured in control medium for the first 48 h and then cultured to Day 6 in medium without pyruvate, thus forcing the embryos to use lactate instead of pyruvate. On Day 6, the percentage of embryos that formed blastocysts in the pyruvate free medium increased from 28.6%a ± 1.0 to 33.9%b ± 1.0; P ≤ 0.05 (n = 490, 4 replications) compared with the control and total cell number increased from 30.7a ± 1.5 to 41.3b ± 1.8 cells, respectively; P ≤ 0.05 (n = 65, 4 replications). The results from Experiments 2 and 3 were unanticipated as it was believed that the embryo would be more dependent on pyruvate for energy up to the blastocyst stage. We believed in Experiment 2 that from zygote to 4 cells the embryos were not as capable of using lactate and that removing the pyruvate would hinder further development. In Experiment 3, forcing the embryo to use lactate from Day 2 to Day 6 significantly improved blastocyst development and total cell number, suggesting that the embryo is not dependent on a specific energy source or that there are adequate pyruvate stores in the oocyte to 4-cell stage, to promote development to blastocyst. Funding was provided by Food for the 21st Century, the University of Missouri, and the National Institutes of Health (OD011140).


2007 ◽  
Vol 19 (1) ◽  
pp. 191
Author(s):  
K. B. Lee ◽  
A. Bettegowda ◽  
J. J. Ireland ◽  
G. W. Smith

Previous studies from our laboratory have demonstrated a positive association of follistatin mRNA abundance with oocyte competence. Follistatin mRNA is greater in germinal vesicle stage oocytes collected from prepubertal (model of poor oocyte competence) vs. adult animals. Furthermore, follistatin mRNA abundance is also greater in early-cleaving 2-cell bovine embryos (collected prior to the maternal zygotic transition and initiation of significant transcription from the embryonic genome) than their late-cleaving counterparts. Given these results and the fact that early-cleaving embryos develop to the blastocyst stage at a greater rate, we hypothesized that follistatin has a stimulatory role in early embryonic development. To begin to test this hypothesis, we determined the effects of follistatin treatment of in vitro-produced bovine embryos (during the initial 72 h post-fertilization) on time to first cleavage, development to the blastocyst stage (Day 7), and blastocyst cell allocation (quality). Cumulus–oocyte complexes (COCs) were harvested from ovaries obtained from a local abattoir, matured, and fertilized in vitro. After 20 h of co-incubation with spermatozoa, presumptive zygotes were stripped of cumulus cells and cultured in KSOM medium supplemented with 0.3% BSA containing 0, 1, 10, or 100 ng mL-1 follistatin (n = 25 presumptive zygotes per treatment; n = 6 replicates). Proportions of embryos reaching the 2-cell stage within 30 h (early-cleaving), 30–36 h (late-cleaving), and within 48 h post-fertilization (total cleavage rate) were recorded. Embryos at the 8–16-cell stage were separated 72 h after fertilization and cultured in fresh KSOM medium supplemented with 0.3% BSA and 10% FBS until Day 7. The proportion of embryos reaching the blastocyst stage at Day 7 post-fertilization was recorded and the numbers of inner cell mass (ICM) and trophectoderm (TE) cells determined by differential staining. Follistatin treatment did not increase the rate of total cleavage and the proportion of late-cleaving embryos when compared to control. However, supplementation with 1 and 10, but not 100, ng mL-1 follistatin increased the proportion of early-cleaving embryos (26.3 and 35.3% vs. 9.5%) and development to the blastocyst stage (28.6 and 31.7% vs. 18.4%) relative to controls (P &lt; 0.05). Treatment with 10 ng mL-1 follistatin increased total cell numbers (130.1 vs. 110.9) and proportion of trophectoderm cells (61.6% vs. 48.4%) and decreased the ICM/total cell ratio (38.4% vs. 51.5%) in Day 7 blastocysts relative to controls (P &lt; 0.05). The results indicate that exogenous follistatin treatment during the early stages of in vitro bovine embryo development can enhance time to first cleavage, development to the blastocyst stage, and cell allocation in favor of increased trophectoderm cells, and can support a potential functional role for follistatin in early embryogenesis.


2011 ◽  
Vol 23 (1) ◽  
pp. 146
Author(s):  
C. N. Murphy ◽  
L. D. Spate ◽  
B. K. Bauer ◽  
R. S. Prather

One barrier to successfully making embryo transfer viable in the swine industry is an inability to consistently cryopreserve oocytes and embryos. This process is made difficult by the high lipid content of porcine oocytes and embryos. The objective of this study was to test the in vivo fertilized embryo’s sensitivity to vitrification. Gilts were inseminated on the first day of standing oestrus (Day 0) and then again 12 h later. On Day 2 the oviducts and tip of the uterine horns were flushed with PVA-treated TL-HEPES and 2-cell stage embryos were collected and placed into PVA-treated TL-HEPES and centrifuged at 17 000 × g. The treatment groups were 1) 300 mOsmo centrifuged for 6 min, 2) 500 mOsmo centrifuged for 6 min, 3) 500 mOsmo centrifuged for 12 min, and 4) 500 mOsmo centrifuged for 18 min. After centrifugation the embryos were transferred to Porcine Zygote Medium 3 (PZM3) and cultured to Day 6 or 7 at which point blastocysts were vitrified using 10% DMSO, 10% ethylene glycol in M199 supplemented with 20% FBS (holding medium) for 2 min. Embryos were transferred to holding media with 20% DMSO and 20% ethylene glycol and drawn into an open pulled straw via capillary reaction; it was then submerged into LN2. Embryos were thawed using a step down concentration of 0.33 mM and then 0.2 mM sucrose in holding media each for 6–7 min and then were moved to holding medium alone for 6 to 7 min. The embryos were washed in PZM3, then transferred to 500 μL of PZM3 and cultured for 18 h. Re-expanded embryos were observed, and the nuclei of all embryos were stained with Biz-benzimide and visualised with UV light to determine total cell number. After the embryos were centrifuged and cultured, there was no difference in development to blastocyst (SAS Institute, Cary, NC, USA; Proc GLM) with a mean percentage blastocyst of 85.1% and an N of 54, 51, 53, and 51, respectively, for each treatment. After thawing, percentage of embryos re-expanded was 23.5a, 26.4a,b, 43.2a,b, and 45.6b, respectively. Data was analysed using a PROC GLM in SAS (P < 0.05), with 37, 43, 30, and 36 embryos in each group, respectively. No difference in total cell number across treatments was detected after analysis using PROC GLM in SAS (P < 0.05) with a mean cell number of 29.0. These data suggest that in vivo matured and fertilized blastocysts can survive high osmolarity treatment, centrifugation, and vitrification. The data also show that a high osmolarity treatment centrifuged for 18 min leads to a greater number of re-expanded embryos post-thaw, which may be attributed to better separation of the lipid. Funded by the NIH NCRR R21RR025879 and Food for the 21st Century.


2012 ◽  
Vol 81 (3) ◽  
pp. 229-234 ◽  
Author(s):  
Martina Lojkic ◽  
Iva Getz ◽  
Marko Samardžija ◽  
Mario Matkovic ◽  
Goran Bacic ◽  
...  

The aim of this study was to evaluate whether the addition of cysteamine to the in vitro culture media enhances the yield, hatching rate, total cell number and inner cell mass/total cell number ratio of bovine embryos. A total of 933 bovine oocytes collected from ovaries of 60 slaughtered donors were subjected to in vitro maturation and in vitro fertilization. Following fertilization, embryos were cultured in synthetic oviductal fluid without glucose. After 24 h embryos were transferred into synthetic oviductal fluid with 1.5 mM glucose and 0 (control), 50, 100 and 200 µM of cysteamine. After 48 h, the embryos were transferred into synthetic oviductal fluid with glucose but without cysteamine and cultured until Day 9. The number of cleaved embryos on Day 2, the total number of blastocysts on Day 7 and the number of hatched blastocysts on Day 9 were calculated. Differential staining of inner cell mass and trophectoderm cells of blastocysts were performed on Day 7 and Day 9 of in vitro culture. Supplementation of in vitro culture media with 100 µM cysteamine increased the blastocyst yield (P < 0.05) without affecting the hatching rate. Furthermore, the embryos cultured in the presence of 100 µM cysteamine had significantly higher number of inner cell mass cells (P < 0.05) and the proportion of inner cell mass cells (P < 0.05) compared with the controls. The results of the present study demonstrated that the addition of 100 µM cysteamine to the in vitro culture media improved blastocyst production rate and enhance embryo quality, which could lead to the improvement of the in vitro culture system for bovine embryos.


2005 ◽  
Vol 17 (2) ◽  
pp. 198
Author(s):  
N. Mucci ◽  
J. Aller ◽  
P. Ross ◽  
G. Kaiser ◽  
J. Cabodevila ◽  
...  

Until now, the major obstacle associated with the extensive use of in vitro-produced bovine embryos is the lack of suitable methods to cryopreserve them. At least two approaches exist for overcoming this problem. One is to adjust cryopreservation methods to the requirements of these embryos, and the other is to improve embryo quality by using an appropriate in vitro environment for embryo production. The objective of this study was to determine the effect of estrous cow serum (ECS) during in vitro culture on embryo survival after cryopreservation by slow freezing or vitrification. Cumulus-oocytes complexes were in vitro-matured and fertilized as previously described (Ferre et al. 2003 Theriogenology 59, 301 abst). Presumptive zygotes were denuded from cumulus cells and cultured in groups of 50 in 400 μL drops of CR1aa medium. Seventy-two hour post-insemination (PI) embryos were randomly separated into three groups. Each group was then cultured in CR1aa + 5% ECS (without BSA; CR1-ECS), CR1aa + 3 mg/mL BSA (CR1-BSA), or CR1aa + 5% ECS + 3 mg/mL BSA (CR1-ECS-BSA). Embryos were cultured under 38.5°C, 5% CO2, 5% O2, and 90% N2. At 7.5 days PI, blastocysts from each group were double stained using propidium iodide and bisbenzimide (Hoechst 33342) to determine damaged cells and total cell number. The remaining embryos were randomly cryopreserved by freezing (1.5 M ethylene glycol; cooled at 0.5°C/min to −35°C) or vitrification (open pulled straw, Vajta et al. 1998 Mol. Reprod. Dev. 51, 53–58). After thawing or warming, embryos were cultured in CR1-ECS-BSA to evaluate embryo survival (hatching rate). Data were analyzed by χ2, ANOVA and Student's t-test (SAS Institute, Inc., Cary, NC, USA). Total cell number was higher in embryos cultured in CR1-ECS than in CR1-BSA or CR1-ECS-BSA (CR1-ECS: 142.1 ± 4.7, n = 23 vs. CR1-BSA 124.7 ± 4.9, n = 21, and CR1-ECS-BSA 125.8 ± 4.5, n = 25; t-test, P < 0.05). No differences were found in percent of damaged cells (CR1-ECS: 0.7%; CR1-BSA: 1.8%; CR1-ECS-BSA: 0.7%). Blastocyst survival after thawing was affected by cryopreservation methods and culture media (P < 0.01, Table 1). No interaction was found between both factors. In conclusion, under our experimental conditions elimination of ECS from CR1aa medium improves embryo cryotolerance. Vitrification allows for higher survival rates, regardless of the presence of serum during embryo culture. Table 1. Effect of cryopreservation method and serum supplementation during embryo culture on survival rate of in vitro-produced bovine embryos


Sign in / Sign up

Export Citation Format

Share Document