356 IMPROVED ENUCLEATION EFFICIENCY FOR PIG SOMATIC CELL NUCLEAR TRANSFER BY DENUDING OOCYTES AT 30 HOURS OF IN VITRO MATURATION

2007 ◽  
Vol 19 (1) ◽  
pp. 293 ◽  
Author(s):  
K. Song ◽  
J. Park ◽  
E. Lee

Oocytes for somatic cell nuclear transfer (SCNT) have to be removed from their cumulus cells before enucleation. Denuding oocytes by vortexing or repeated pipetting makes the polar body (PB) deviate from the metaphase (MII) plate, which in turn makes it difficult to remove DNA materials completely during enucleation. We hypothesized that denuding oocytes at 30 h of IVM maintains the MII plate and PB in a closer position and therefore makes it easy to enucleate. To test this hypothesis, oocytes were matured in TCM-199 supplemented follicular fluid, hormones, EGF, cysteine, and insulin for first 22 h, and in a hormone-free medium for 18 h with three modifications: (1) cumulus cells were removed from oocytes just prior to enucleation at 40 h of IVM (control), (2) oocytes were denuded at 30 h of IVM and co-cultured with their detached cumulus cells for 10 h (D+), and (3) oocytes denuded at 30 h of IVM were cultured without cumulus cells (D-). After IVM, some oocytes were stained with Hoechst 33342 and photographed by a digital camera; the distance between the MII plate and the PB were measured using an image analysis program (ImageJ 1.36; http://rsb.info.nih.gov/ij). Also, the enucleation rate after blind enucleation and the in vitro development of SCNT embryos were determined. For SCNT, oocytes were enucleated, and nuclear material from donor cells (skin fibroblasts from a miniature pig) was inserted; oocytes were then electrically fused, and activated 1 h after fusion. SCNT embryos were cultured in a modified NCSU-23 (Park et al. 2005 Zygote 13, 269-275) for 6 days. Embryos were examined for their cleavage and blastocyst formation on Days 2 and 6, respectively (the day of SCNT was designated Day 0). Data were analyzed by the GLM procedure and the least significant difference test in SAS (SAS Institute, Cary, NC, USA). The distance between the MII plate and the PB was significantly (P < 0.01) shorter in D+ and D- embryos (19.4 and 18.9 �m, respectively) than in the controls (25.5 �m). Enucleation rates after blind enucleation were significantly (P < 0.01) higher in D+ and D- groups (77% and 72%, respectively) than in the controls (60%). Oocyte maturation (89–91%), SCNT embryo cleavage (71–77%), blastocyst formation (4–5%), and embryo cell number (39-45 cells/embryo) were not altered by different denuding methods. The perivitelline space (PVS) increases with time during maturation and denudation, after PB extrusion markedly enhances PB deviation. It is likely that increased PVS in control oocytes enhanced PB deviation during denudation and then resulted in lower enucleation rate. In conclusion, the results of this study indicated that denuding at 30 h of IVM maintained the MII plate and the PB in a closer position and improved enucleation efficiency without impairing developmental capacity of SCNT embryos. This work was supported by the Research Project on the Production of Bio-organs (No. 200506020601), Ministry of Agriculture and Forestry, Republic of Korea.

2011 ◽  
Vol 23 (1) ◽  
pp. 139
Author(s):  
J. You ◽  
N. Kim ◽  
S. Kang ◽  
E. Lee

The size of perivitelline space (PVS) is closely related with the frequency of polyspermic fertilization in pig oocytes. It has been reported that enlargement of PVS is attributed to accumulation of glycoproteins synthesised and secreted from cumulus cells and that culture of immature oocytes in low-salt medium enlarges PVS in pigs. This study examined the developmental competence of pig oocytes after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in relation to the size of the PVS of oocytes matured in vitro (IVM). Cumulus–oocyte complexes were matured in medium 199 (Experiment 1) or porcine zygote medium (PZM)-3 (Experiment 2) supplemented with pig follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones for the first 22 h and then cultured in hormone-free medium for an additional 22 h. IVM oocytes were activated electrically for PA or used as recipient cytoplasts for SCNT. PA and SCNT embryos were cultured for 7 days in PZM-3 medium supplemented with bovine serum albumin. The intracellular glutathione (GSH) level in IVM oocytes was determined by analysing the fluorescence intensity of oocytes after staining with CellTracker Blue CMF2HC. The expression of CDK1, PCNA, and ERK2 mRNA in IVM oocytes was analysed by RT-PCR. Data were analysed using a general linear model procedure followed by the least significant difference mean separation procedure when the treatments differed at P < 0.05. In Experiment 1, oocytes with a larger PVS had higher (P < 0.05) levels of intracellular GSH (1.0 pixels/oocyte v. 0.6 pixels/oocyte) and blastocyst formation (54% v. 37%) after PA than oocytes with smaller PVS. In Experiment 2, maturation culture of oocytes in PZM-3 with reduced (61.6 mM) NaCl concentration significantly increased (P < 0.05) the size of the PVS (5.2 μM v. 3.3 μM) compared with control oocytes that were matured in PZM-3 containing 108 mM NaCl, although the treatment did not alter the nuclear maturation. Moreover, oocytes with increased PVS expressed more CDK1, PCNA, and ERK2 mRNA and had higher (P < 0.05) intracellular GSH levels (1.6 pixels/oocyte v. 1.2 pixels/oocyte) and increased blastocyst formation after PA (52% v. 41%) and SCNT (32% v. 18%) compared with control oocytes. Our results demonstrate that pig oocytes with a large PVS have greater developmental competence after PA and SCNT, which is attributed to improved cytoplasmic maturation resulting from the enhanced GSH level and transcription factor expression and that enlargement of PVS by the culture in low-NaCl medium also improves developmental competence of pig oocytes. This work was supported by grants (#20070301034040 and #20080401034072) from the BioGreen 21 Program (Rural Development Administration, Republic of Korea).


2008 ◽  
Vol 20 (1) ◽  
pp. 112 ◽  
Author(s):  
H. X. Wei ◽  
K. Zhang ◽  
Y. F. Ma ◽  
Y. Li ◽  
Q. Y. Li ◽  
...  

Accumulating evidence suggests that trichostatin A (TSA), a histone deacetylase inhibitor, can increase the success rate of somatic cloning. The objective of this study was to investigate the effect of 50 nm TSA treatment on the development of porcine somatic cell nuclear transfer (SCNT) and parthenogenically activated (PA) embryos. Cumulus-oocyte complexes were matured in vitro. The oocytes with the first polar body (PB1) were chosen for SCNT, and the rest with PB1 or good morphology were selected for PA by a single 100-μs direct current pulse of 1.6 kV cm–1, the same parameter as for electrical fusion. GFP transgenic fetal fibroblast cells were used as nuclear donors. Data were analyzed using SPSS (13.0; SPSS, Inc., Chicago, IL, USA) with one-way ANOVA. In Experiment 1, immediately after electrical fusion and activation, the reconstructed embryos were randomly cultured in porcine zygote medium 3 (PZM3) with 10 μg mL–1 cytochalasin B (CB) and 10 μg mL–1 cycloheximide (CHX), with either 0 nm (control) or 50 nm TSA for the first 4 h, before being cultured for another 20 h in PZM3 without CB and CHX. After being washed, the embryos were cultured in PZM3 medium without TSA until Day 6 at 39.0°C, 5% CO2, 5%O2, 90% N2, and 100% humidity. The same experimental design was used for PA embryos concurrently. The results showed that there were no significant differences in blastocyst rates for SCNT or PA between control and TSA groups (23.0 ± 6.1% v. 27.9 ± 6.3%; 21.0 ± 1.0% v. 17.5 ± 3.2%, respectively). Neither were there differences in the cell numbers of blastocysts (38.3 ± 5.7 v. 32.2 ± 3.4; 42.2 ± 3.5 v. 39.0 ± 1.9, respectively). In Experiment 2, TSA treatment was prolonged to either 36 or 40 h. The blastocyst rates of SCNT were increased (7.3 ± 1.2% (0 h), 13.3 ± 2.6% (36 h), and 20.0 ± 3.3% (40 h)), whereas those of PA were decreased (46.7 ± 5.0% (0 h), 27.7 ± 6.5% (36 h), and 30.8 ± 6.3% (40 h)). The cell numbers of blastocysts from either SCNT or PA were also decreased (SCNT: 47.5 ± 3.8, 37.5 ± 2.0, and 37.1 ± 3.3; PA: 46.1 ± 1.9, 37.5 ± 1.9, and 39.3 ± 2.2; P < 0.05). In Experiment 3, the cell number and the apoptotic index of Day 5, 6, and 7 PA blastocysts treated with 0 or 50 nm TSA were determined by the terminal deoxynucleotide-mediated nick end labeling (TUNEL) assay (Table 1). The results suggested that TSA treatment probably delayed embryo development, which may be one of the reasons for the lower cell numbers in the TSA-treated group. Table 1. Cell apoptosis of PA blastocyst by TUNEL


2007 ◽  
Vol 19 (1) ◽  
pp. 163
Author(s):  
N. T. Uoc ◽  
F. de Rennis ◽  
N. H. Duc ◽  
L. C. Bui ◽  
N. V. Hanh ◽  
...  

Reproductive activity in swamp buffalo is characterized by a clearly demonstrated anestrus season. The aim of the present study was to evaluate season effect on the oocyte collection, in vitro maturation, and somatic cell nuclear transfer. The ovaries collected from a slaughterhouse were divided into 3 groups according to the collection period: (1) G1: from January to April; G2: from May to August, which is characterized by higher climate temperature and low reproductive activity; and G3: from September to December. Cumulus–oocyte complexes (COCs) were aspirated from follicles 2-6 mm in diameter using an 18-gauge needle, washed in HEPES-buffered TCM-199 (Sigma-Aldrich, St Louis, MO, USA), and classified following 3 different quality levels: A (with 4–6 layers of cumulus cells), B (with 2–3 layers of cumulus cells), and C (few or without cumulus cells). The oocytes of A and B categories were used for IVM in maturation media currently used in cattle (TCM-199 medium + 10% fetal bovine serum) with an increase of FSH concentration (30 �g mL-1) and estradiol-17β (3 �g mL-1). Maturation was carried out at 39�C in a water-saturated incubator, under 5% CO2 for 22 h. The oocytes were observed for the cumulus expanding and the presence of polar body (PB). The oocytes with PB were used for further enucleation and cell nuclear transfer using buffalo quiescent fibroblast cells and the technique described previously (Nguyen et al. 2000 Theriogenology 53, 235). The percentages of intact and fused oocytes as well as reconstructed embryos developed to blastocyst stage were compared for the oocytes from G1 and G2. The results indicated that the average number of good quality COCs collected per ovary for the G1, G2, and G3 period were 6.00 � 4.08 (n = 426), 2.93 � 2.55 (n = 346), and 4.78 � 1.05 (n = 445), respectively. The percentages of A and B oocytes were 62.4% (1.58 � 0.51 vs. 2.17 � 1.54), 63.2% (0.90 � 0.32 vs. 0.95 � 0.50), and 54.7% (1.12 � 0.25 vs. 1.49 � 0.53), respectively; the maturation rate was 55.08%, 56.28%, and 52.16%, respectively. There were no significant differences between G1 and G2 in the percentage of intact and fused oocytes (93.7% and 59% for G1; 100% and 60% for G2, respectively), but the rate of embryos developed to blastocyst stage was higher for oocytes from G1 (18.5% vs. 10.2%). In conclusion, in swamp buffalo, the hot season affected significantly the number of oocytes collected per animal and the subsequent results of somatic cell nuclear transfer. The optimal period for working with buffalo oocyte is from January to April. This work was aupported by a grant from the Vietnam-Italy 3AB3 Project.


2007 ◽  
Vol 19 (1) ◽  
pp. 167
Author(s):  
H. Y. Yong ◽  
K. Song ◽  
E. Lee

Activation treatment is one of the important factors that affect the development of somatic cell nuclear transfer (SCNT) embryos. We examined the effect of post-activation (PA) treatment on the change in donor nucleus and SCNT embryo development in pig. Cumulus–oocyte complexes (COCs) were matured in TCM-199 supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones for the first 22 h and in fresh hormone-free medium for 18 h. After 40 h of IVM, oocytes with a polar body were enucleated, injected with a donor cell (ear skin fibroblasts bearing the human decay accelerating factor gene), electrically fused, and activated 1 h after fusion. Then, SCNT embryos were cultured in a modified NCSU-23 medium (Park et al. 2005 Zygote 13, 269–275) containing no additives (control), 5 �g mL-1 cytochalasin B (CB), 0.4 �g mL-1 demecolcine (D), or CB+D for 4 h. CB and D were prepared from stock solutions of 5 mg mL-1 CB in DMSO and 10 �g mL-1 D in Hank&apos;s balanced salt solution (HBSS), respectively. After PA treatment, SCNT embryos were cultured in a modified NCSU-23 medium for 6 days. The embryos (n &equals; 188, 189, 187, and 186 for control, CB, D, and CB&plus;D, respectively) were examined for cleavage and blastocyst (BL) formation on Days 2 and 6, respectively (Day 0 &equals; the day of SCNT). Cell number of BL was examined by counting the number of nuclei stained with Hoechst 33342 under fluorescence. To assess the nuclear structure, some of the fused oocytes were fixed at 12 h after PA and stained with aceto-orcein (n &equals; 42, 44, 43, and 45 for control, CB, D, and CB&plus;D, respectively). Nuclear state was classified as 1 pseudopronucleus (PPN), multi-PPN, and others. Data were analyzed by ANOVA (GLM procedure) in SAS (SAS Institute, Inc., Cary, NC, USA). PA treatment with D and CB&plus;D significantly (P &lt; 0.05) increased 1 PPN formation (84 and 80&percnt;, respectively) compared to control and CB (62 and 64&percnt;, respectively). Conversely, a higher (P &lt; 0.001) rate of multi-PPN was observed in control and CB (31 and 36&percnt;, respectively) than in D and CB&plus;D (9 and 7&percnt;, respectively). This result was in contrast with the finding in mouse that nocodazole, another microtubule depolymerizing agent, induced multi-PPN in reconstructed zygotes. Pig meiotic spindles differ at their poles from those in mice by lacking &gamma;-tubulin. Absence of &gamma;-tubulin in pig oocytes would make spindle dynamics more sensitive to depolymerization, which might lead to a different result in this study. Embryo cleavage (77&ndash;85&percnt;) was not altered by PA treatments, but BL formation was significantly (P &lt; 0.05) increased by CB, D, or CB&plus;D (26, 28, and 28&percnt;, respectively) compared to control (16&percnt;). Total cell number of BL (36&ndash;40 cells/BL) was not different among groups. These results indicate that PA treatment with CB and/or D improved in vitro development of SCNT pig embryos and that D treatment effectively prevented the formation of multi-PPN. This work was supported by the Research Project on the Production of Bio-organs (No. 200506020601), Ministry of Agriculture and Forestry, Republic of Korea.


2015 ◽  
Vol 27 (1) ◽  
pp. 159
Author(s):  
S. H. Lee ◽  
E. J. Park ◽  
J. H. Moon ◽  
K. Y. Song ◽  
S. J. Kim ◽  
...  

Antioxidants are widely used for in vitro production of embryos due to their activity as reactive oxygen species scavengers. Among various antioxidants, resveratrol supplementation in in vitro-maturation (IVM) media and trolox supplementation in in vitro-culture (IVC) media improves oocyte maturation and embryonic development in other species, such as cattle and sheep. Limited information is available, however, on the effect of resveratrol and/or trolox on porcine embryos produced in vitro. In this study, we evaluated the effect of resveratrol supplemented to the media of IVM and trolox treatment during IVC on porcine parthenotes. We used TCM-199 as IVM media and porcine zygote medium (PZM)-5 as IVC media. For activation, matured oocytes after 44 h of IVM were electrically activated with 280 mM mannitol and cultured in IVC medium (PZM-5). Statistical analyses of all data were carried out using SPSS 17.0 (one-way ANOVA, followed by Duncan's multiple range test). In the experiment 1, a total of 618 oocytes were used in 4 independent replicates to evaluate the effect of 4 different concentrations (0, 1, 2, or 4 μM) of resveratrol during IVM on parthenotes. Oocytes treated with 2 μM resveratrol during IVM had significantly higher cleavage rates and blastocyst formation rates (73.0 and 34.4% v. 64.0 and 18.3%, respectively) than the control group. Experiment 2 involved supplementation with trolox (0 μM, 100 μM, 200 μM, 400 μM) to 957 parthenotes during IVC for 7 days (4 replicates). Cleavage rates significantly increased in the 100 μM group (75.6 v. 69.1%), and blastocyst formation rates in the 200 μM group were significantly higher compared to the control group (33.7 v. 23.8%). To determine the combined effects of resveratrol treatment during IVM and trolox treatment during IVC, in the experiment 3 we selected an optimized concentration (2 μM of resveratrol and 200 μM of trolox) from each experiment and evaluated the combined effects (3 times replicated). We designed 4 groups: (1) control, (2) resveratrol only (R), (3) trolox only (T), and (4) resveratrol-trolox (R-T). The R group and R-T group showed significantly higher cleavage rates than the control group (81.8 and 83.1% v. 72.3%). All treatment groups showed significantly increased blastocyst formation rates compared with the control group (39.2, 37.8, and 38.4% v. 23.7%). There is no significant difference in total cell numbers of blastocyst among the control, R, and T groups (47.8 v. 54.2 v. 54.7). However, the R-T group had significantly more cells than the control group (67.1 v. 47.8). Our results suggest that 2 μM resveratrol treatment during IVM, followed by 200 μM trolox treatment during IVC, improves developmental potential of the parthenotes. For a further study, we will apply this condition to somatic cell nuclear transfer, and we also will verify quantitative PCR analysis of apoptosis-related mRNA expression of PA and somatic cell nuclear transfer embryos. This study was supported by the MOTIE (#10033839), IPET (#311011-05-3-SB010), Research Institute for Veterinary Science, TS Corporation, and the BK21 plus program.


2018 ◽  
Vol 30 (10) ◽  
pp. 1342 ◽  
Author(s):  
Zhao-Bo Luo ◽  
Long Jin ◽  
Qing Guo ◽  
Jun-Xia Wang ◽  
Xiao-Xu Xing ◽  
...  

Accumulating evidence suggests that aberrant epigenetic reprogramming and low pluripotency of donor nuclei lead to abnormal development of cloned embryos and underlie the inefficiency of mammalian somatic cell nuclear transfer (SCNT). The present study demonstrates that treatment with the small molecule RepSox alone upregulates the expression of pluripotency-related genes in porcine SCNT embryos. Treatment with the histone deacetylase inhibitor LBH589 significantly increased the blastocyst formation rate, whereas treatment with RepSox did not. Cotreatment with 12.5 μM RepSox and 50 nM LBH589 (RepSox + LBH589) for 24 h significantly increased the blastocyst formation rate compared with that of untreated embryos (26.9% vs 8.5% respectively; P < 0.05). Furthermore, the expression of pluripotency-related genes octamer-binding transcription factor 4 (NANOG) and SRY (sex determining region Y)-box 2 (SOX2) were found to significantly increased in the RepSox + LBH589 compared with control group at both the 4-cell and blastocyst stages. In particular, the expression of NANOG was 135-fold higher at the blastocyst stage in the RepSox + LBH589 group. Moreover, RepSox + LBH589 improved epigenetic reprogramming. In summary, RepSox + LBH589 increases the expression of developmentally important genes, optimises epigenetic reprogramming and improves the in vitro development of porcine SCNT embryos.


2006 ◽  
Vol 18 (2) ◽  
pp. 131
Author(s):  
K. Kaneyama ◽  
S. Kobayashi ◽  
S. Matoba ◽  
Y. Hashiyada ◽  
K. Imai ◽  
...  

Although many studies have been conducted on somatic cell nuclear transfer, there are only a few reports on cryopreservation of reconstructed embryos after nuclear transplantation. The objective of this study was to examine in vitro or in vivo development of vitrified blastocysts obtained by nuclear transfer. Nuclear transfer was carried out according to the procedure of Goto et al. (1999 Anim. Sci. J. 70, 243–245), and conducted using abattoir-derived oocytes and cumulus cells derived by ovum pickup from Holstein and Japanese Black cows. Embryos were vitrified as described by Saito et al. (1998 Cryobiol. Cryotech. 43, 34–39). The vitrification solution (GESX solution) was based on Dulbecco's PBS containing 20% glycerol (GL), 20% ethylene glycol (EG), 0.3 M sucrose (Suc), 0.3 M xylose (Xyl), and 3% polyethylene glycol (PEG). The blastocysts were equilibrated in three steps, with 10% GL, 0.1 M Suc, 0.1 M Xyl, and 1% PEG for 5 min (1); with 10% GL, 10% EG, 0.2 M Suc, 0.2 M Xyl, and 2% PEG for 5 min (2) and GESX solution (3). After transfer to GESX, equilibrated embryos were loaded to 0.25-mL straws and plunged into liquid nitrogen for 1 min. The vitrified blastocysts were warmed in water (20°C) and diluted in 0.5 M and 0.25 M sucrose for 5 min each. Equilibration and dilution procedures were conducted at room temperature (25–26°C). After dilution, the vitrified blastocysts were cultured in TCM-199 supplemented with 20% fetal calf serum and 0.1 mM β-mercaptoethanol at 38.5°C under gas phase of 5% CO2 in air. In Experiment 1, survival rates after vitrification were compared between the nuclear transfer and the IVF blastocysts. Survival rates of vitrified nuclear transfer blastocysts (n = 60, Day 8) at 24 and 48 h were 70.0% and 56.7%, respectively, and those of vitrified IVF blastocysts (n = 41) were 82.9% and 82.9%, respectively. There were no significant differences in survival rates at 24 and 48 h between the two groups. In Experiment 2, one (VIT-single) or two (VIT-double) vitrified and one (nonVIT-single) or two (nonVIT-double) nonvitrified reconstructed blastocysts per animal were transferred into Holstein dry cows. The result of Experiment 2 is shown in Table 1. This experiment demonstrated that the vitrification method in this study can be used for cloned embryo cryopreservation but the production rate should be improved. Table 1. Comparison of survival rates of vitrified or nonvitrified cloned embryos after transfer


2013 ◽  
Vol 25 (1) ◽  
pp. 241 ◽  
Author(s):  
H. S. Pedersen ◽  
R. Li ◽  
Y. Liu ◽  
P. Løvendahl ◽  
P. Holm ◽  
...  

Most of the porcine oocytes used for in vitro studies are collected from gilts. Our aims were to study development capacity of gilt v. sow oocytes (pre- and postpubertal respectively) using 2 techniques illustrating development competence [parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT)], and to describe a simple method to select the most competent oocytes. Inside-ZP diameter of in vitro-matured gilt oocytes was measured (µm; small ≤110; medium >110; large ≥120). Gilt and sow oocytes were morphologically grouped as good (even cytoplasm, smooth cell membrane, visible perivitelline space) or bad before used for PA (good and bad) or SCNT (good). The PA and SCNT were performed as before with minor modifications (Cryobiol. 64, 60; Cell. Reprogr. 13, 521) before culture for 6 days in a standard or timelapse incubator. Rates of cleavage (CL%, Day 2), blastocyst (BL%, Day 6), and blastocyst cell number (Hoechst 33342) were recorded. For PA embryos in a timelapse incubator (26 oocytes/group; 2 replicates), the first appearance of 2-cell stage was recorded. Between groups, CL% and BL% were analysed by chi-square and cell number by t-test. Results are presented in the table for the development of good oocytes after PA. The results show a low CL% of small-gilts compared with the other groups. The BL% increased with gilt-oocyte-diameter; however, sow oocytes reached the highest BL%. Total cell number was higher in sow than in gilt blastocysts. The SCNT experiments showed no differences in CL% (90–96) and blastocyst cell number (51–59) between groups. The BL% was higher in medium gilts and sows (41; 45) compared with large gilts (21). The BL% of bad oocytes was 1% from all 4 groups (176 oocytes, 25 replicates). Time interval for appearance of 2-cell stage for embryos developing into blastocysts showed no differences between groups (19–20 h). Within groups, this time interval showed a larger standard deviation for embryos not developing v. embryos developing into blastocysts. It is concluded that (a) sow oocytes have higher developmental capacity compared to gilts, (b) small gilt oocytes are not developmentally competent, (c) measurement of inside-ZP diameter, combined with morphological selection, is useful to remove non-competent oocytes. Further studies are needed to dissect the developmental capacity of medium and large gilt oocytes. Also, further timelapse studies may reveal a time interval in which the first cleavage of embryos with high developmental capacity takes place. Table 1.Rates of cleavage (CL%), blastocyst (BL%), and total no. of cells (mean ± SEM) in blastocysts of PA embryos from gilts and sows1


2007 ◽  
Vol 19 (1) ◽  
pp. 147
Author(s):  
E. Lee ◽  
K. Song ◽  
Y. Jeong ◽  
S. Hyun

Generally, blastocyst (BL) formation and embryo cell number are used as main parameters to evaluate the viability and quality of in vitro-produced somatic cell nuclear transfer (SCNT) embryos. We investigated whether in vitro development of SCNT pig embryos correlates with in vivo viability after transfer to surrogates. For SCNT, cumulus–oocyte complexes (COCs) were matured in TCM-199 supplemented with follicular fluid, hormones, EGF, cysteine, and insulin for the first 22 h and in a hormone-free medium for 18 h. Three sources of pig skin cells were used as nuclear donor: (1) skin fibroblasts of a cloned piglet that were produced by SCNT of fetal fibroblasts from a Landrace × Yorkshire × Duroc F1 hybrid (LYD), (2) skin fibroblasts of a miniature pig having the human decay accelerating factor gene (hDAF-MP), and (3) skin fibroblasts of a miniature pig with a different strain (MP). MII oocytes were enucleated, subjected to nuclear transfer from a donor cell, electrically fused, and activated 1 h after fusion. SCNT embryos were cultured in a modified NCSU-23 (Park Y et al. 2005 Zygote 13, 269–275) for 6 days or surgically transferred (110–150 fused embryos) into the oviduct of a surrogate that showed standing estrus on the same day as SCNT. Embryos were examined for cleavage and BL formation on Days 2 and 6, respectively (Day 0 = the day of SCNT). BLs were examined for their cell number after staining with Hoechst 33342. Pregnancy was diagnosed by ultrasound 30 and 60 days after embryo transfer. Embryo cleavage was not affected by donor cells (82, 81, and 72% for LYD, hDAF-MP, and MP, respectively), but BL formation was higher (P &lt; 0.05) in hDAF-MP (16%) than in LYD (9%) and MP (6%). MP showed higher (P &lt; 0.05) BL cell number (46 cells/BL) than hDAF-MP (34 cells) but did not show a difference from LYD (37 cells). LYD and MP showed higher pregnancy rates (Table 1) on Days 30 and 60, even though they showed lower BL formation in vitro. Due to a relatively small number of embryo transfers through a limited period, we could not exclude any possible effects by seasonal or operational differences. These results indicated that pregnancy did not correlate with in vitro BL formation of SCNT pig embryos but rather were affected by the source of donor cells. Table 1.In vivo development of somatic cell nuclear transfer pig embryos derived from different sources of donor cells This work was supported by the Research Project on the Production of Bio-organs (No. 200506020601), Ministry of Agriculture and Forestry, Republic of Korea.


2015 ◽  
Vol 27 (1) ◽  
pp. 112 ◽  
Author(s):  
Y. H. Choi ◽  
I. C. Velez ◽  
B. Macías-García ◽  
K. Hinrichs

In equine cloning, the scarcity of equine oocytes places emphasis on development of the most efficient nuclear transfer (NT) methods possible. In other species, using oocytes matured for the shortest duration needed to reach metaphase II has increased NT efficiency. In the present study, we examined the effect of duration of oocyte maturation at the time of enucleation on equine cloned blastocyst production. Oocytes were collected from live mares by transvaginal ultrasound-guided aspiration of all visible follicles ≥5 mm in diameter. The oocytes were held overnight (16–22 h) at room temperature, matured in vitro, and reconstructed with donor cells as described in our previous study (Choi et al. 2013 Theriogenology 79, 791–796). In Experiment 1, oocytes were divided into 2 groups and matured for 20 or 24 h. After enucleation, oocytes were reconstructed by direct injection of donor cells. Reconstructed oocytes were held for 5 h and then activated by treatment with 5 μM ionomycin for 4 min, then injection with sperm extract, followed by incubation in 2 mM 6-DMAP for 4 h. The activated reconstructed oocytes were cultured in global human embryo culture medium under 5% CO2, 6% O2, and 89% N2 at 38.2°C for 7 to 11 days (20 mM glucose was added at Day 5) and blastocyst rate was recorded. Because a low maturation rate was found at 20 h in Experiment 1, in Experiment 2 oocytes were denuded at 20 h and those that were mature were enucleated and used for NT; those that had not cast out a polar body at 20 h were cultured for an additional 3 h (20 + 3h) and then evaluated for polar body formation and used for NT, which was conducted as in Experiment 1. Data were analysed by Fisher's exact test. In Experiment 1, 203 oocytes were collected in 46 aspiration sessions. The rate of oocyte maturation to metaphase II was significantly lower for oocytes cultured for 20 h (35/116, 30%), than for those cultured for 24 h (47/80, 59%). However, the rate of blastocyst development was significantly higher for oocytes cultured for 20 h (11/27, 41%) than for 24 h (2/38, 5%). In Experiment 2, 89 oocytes were collected in 18 aspiration sessions. After 20 h of maturation culture, 22 oocytes were mature (25%). After an additional 3 h of culture, 21 additional oocytes had matured. There were no significant differences between the two treatments (20 and 20 + 3h) in reconstruction rates (77%, 17/22, and 90%, 19/21, respectively) or blastocyst rates (24%, 4/17, and 32%, 6/19, respectively). These results indicate that duration of in vitro maturation, or the duration of presence of cumulus cells, influences blastocyst development after somatic cell NT in the horse. This appears to be due to a benefit of using oocytes immediately after they reach metaphase II; if this is ensured as in Experiment 2, the duration of maturation itself had no effect.This work was supported by the American Quarter Horse Foundation, the Link Equine Research Endowment Fund, Texas A&M University, and by Ms. Kit Knotts.


Sign in / Sign up

Export Citation Format

Share Document