136 INVESTIGATION OF LEPTIN ON DEVELOPMENT OF MOUSE EMBRYOS

2015 ◽  
Vol 27 (1) ◽  
pp. 160
Author(s):  
A. C. Taskin ◽  
A. Kocabay ◽  
M. Yucel

Leptin is a hormone-like protein of 167 amino acids. As an adipocyte-related hormone it has an important role in weight regulation and physical fitness but also has effects on reproductive and other physiological mechanisms. The aim of the present study was to investigate the effects of different concentrations of leptin added to the culture media, the quality, in vitro development rate, and in vivo rate of mouse embryos. Superovulated CB6F1 (C57BL/6XBalb/c) hybrid female mice (5–6 weeks of age) were killed ~18 to 20 h after hCG administration. Single-cell embryos were flushed from the oviducts of the dead mice with human tubal fluid medium supplemented with HEPES and 3 mg mL–1 of BSA. They were cultured in Quinn's cleavage medium supplemented with 4 mg mL–1 of BSA in 5% CO2, 37°C until reaching 2-cell stage. The 2-cell embryos were randomly divided into 4 groups and cultured in Quinn's blastocyst medium supplemented with 4 mg mL–1 BSA + 0, 10, 50, and 100 ng mL–1 leptin (L0, L10, L50, and L100) in 5% CO2, 37°C until the blastocyst stage. Some of the developing blastocysts were used for differential staining for the inner cell mass and trophectoderm (TE) cells [Mallol et al. 2013 Syst. Biol. Reprod. Med. 59,117–122]. Some of them were transferred into pseudopregnant females (CD1) on the 2.5 to 3.5th days and kept until the 13.5th day of pregnancy for the in vivo development rate. The results were evaluated using one-way ANOVA with Bonferroni post-hoc test in SPSS 22.0. The P-values <0.05 were considered statistically significant. Each experiment was repeated at least 4 times. The blastocyst development rates of L0, L10, L50, and L100 were 92.57% (162/175), 97.16% (205/211), 97.80% (178/182), and 97.85% (182/186), respectively. The in vitro development rates were significantly higher in the L10, L50, and L100 compared with L0 (P < 0.05). The inner cell mass cells of L0, L10, L50, and L100 were 13.17, 14, 16, and 15.43. There was no significant difference between the groups in terms of inner cell mass cells (P > 0.05). The TE cells of L0, L10, L50, and L100 were 47, 56.4, 53.7, and 58.57, respectively. The TE numbers were significantly increased in the presence of L10 and L100 compared with L0 (P < 0.05). The in vivo development rates of L0, L10, L50, and L100 were 13.51% (5/37), 48.72% (19/39), 15.38% (6/39), and 41.03% (16/39), respectively. The in vivo development rates of L10 and L100 were significantly higher than for L0 and L50 (P < 0.05). The resorption rates of L0, L10, L50, and L100 were 10.8% (4/37), 30.8% (12/39), 12.8% (5/39), and 20.5% (8/39), respectively. There was no significant difference between the groups in terms of the resorption rates (P > 0.05). This study found that L10, L50, and L100 were supporting the development of the embryos in the in vitro culture. The L10, L50, and L100 significantly increased the total cell numbers. The L10 and L100 were particularly effective on the number of the TE cells. In conclusion, 10 and 100 ng mL–1 leptin have a positive effect on the in vitro, quality and in vivo development of the mouse embryo. Therefore, leptin seems to play an important role on the embryo development and in vivo development. Research supported by TUBITAK-113O223.

2004 ◽  
Vol 16 (2) ◽  
pp. 154
Author(s):  
H.S. Park ◽  
M.Y. Lee ◽  
S.P. Hong ◽  
J.I. Jin ◽  
J.K. Park ◽  
...  

Recent techniques in somatic cell nuclear transfer (SCNT) have been widely used for animal research. In addition, SCNT techniques may allow for the rescue of endangered species. Despite efforts for wildlife preservation, however, some threatened or endangered wild animal species will likely become extinct. As a preliminary experiment of a series in wildlife research, we tried to identify an improved method for the production of more transferable NT embryos in goats. Mature donor animals of Korean native goats (20–25kg) were synchronized with a CIDR (type G; InterAg, New Zealand) vaginal implant for 10 days followed by a total of 8 twice daily injections of 70mg of FSH (Folltropine, London, Ontario, Canada) and 400IU of hCG (Chorulon, Intervet, Moxmeer, The Netherlands). Oocytes were then collected surgically by retograde oviduct flush or direct aspiration from ovarian follicles in vivo at 29–34h after hCG. Oocytes collected from follicles were matured in TCM-199 containing 10% FBS and hormones. Prepared ear skin cells from the goat were cultured in TCM-199 containing 10% FBS at 39°C, 5% CO2 in air, and confluent monolayers were obtained. Oocytes were enucleated and donor cells from serum starvation (0.5%) culture were fused through a single electric pulse (DC 2.36kvcm−1, 17μs), and then activated by a single electric pulse (AC 5vmm−1, 5s+DC 1.56kvcm−1, 30μs) or chemical treatment (5μgmL−1 ionomycin 5min−1, 1.9mM 6-DMAP/4h). Reconstructed oocytes were cultured in M16 medium with 10% goat serum (GS) for 6–7 days. Data were analyzed by chi-square test. In in vitro development, significantly (P&lt;0.05) more oocytes were cleaved (24/30, 80.0%) and developed (7/24, 29.2%) to morula or blastocyst stage, respectively, in NT oocytes activated by Iono + DMAP compared to electric stimulated oocytes (2/21, 40.0%; 0/2, 0%). There was a significant difference in in vitro development of NT embryos by the method of oocyte collection. Cleavage rate was higher (P&lt;0.05) in NT embryos from in vivo oocytes (23/28, 82.1%) than in in vitro matured oocytes (19/35, 54.3%), and further development to morula or blastocyst was also significantly (P&lt;0.05%) higher in NT embryos from in vivo oocytes (7/23, 30.4%) than in NT embryos from in vitro matured oocytes (0/19, 0%). When we compared NT embryos to parthenotes, developmental rate was not significantly different between NT embryos and parthenotes. These results strongly suggest that the in vivo oocytes will have superior developmental potential to oocytes matured in vitro. Table 1 Effect of different oocyte source on in vitro development following caprine SCNT


Development ◽  
1978 ◽  
Vol 45 (1) ◽  
pp. 93-105
Author(s):  
Brigid Hogan ◽  
Rita Tilly

This paper describes the in vitro development of inner cell masses isolated immunosurgically from mouse blastocysts which had been collected on 3·5 days p.c. and then incubated for 24 h. The inner cell masses continue to grow in culture and develop through a series of stages with increasing complexity of internal organization. By day 1 all of the cultured ICMs have an outer layer of endoderm, and by day 3 some of them have two distinct kinds of inside cells; a columnar epithelial layer and a thin hemisphere of elongated cells. Later, mesodermal cells appear to delaminate from a limited region of the columnar layer, close to where it forms a junction with the thinner cells. By day 5, about 25% of the cultured ICMs have a striking resemblance to normal 7·5-day p.c. C3H embryos, with embryonic ectoderm, extra-embryonic ectoderm and chorion, embryonic and extra-embryonic mesoderm, and visceral endoderm. When mechanically disrupted and grown as attached clumps of cells in a tissue dish, these embryo-like structures give rise to trophoblast-like giant cells. These results suggest that the inner cell mass of 4·5-day p.c. blastocysts contains cells which can give rise to trophoblast derivates in culture.


Development ◽  
1981 ◽  
Vol 66 (1) ◽  
pp. 43-55
Author(s):  
J. Rossant ◽  
K. M. Vijh

Embryos homozygous for the velvet coat mutation, Ve/Ve, were recognized at 6·5 days post coitum by the reduced size of the ectodermal portions of the egg cylinder and the loose, columnar nature of the overlying endoderm. Later in development ectoderm tissues were sometimes entirely absent. Abnormalities appeared in the ectoplacental cone at 8·5 days but trophoblast giant cells and parietal endoderm appeared unaffected. Homozygotes could not be unequivocally identified at 5·5 days nor at the blastocyst stage but were recognized in blastocyst outgrowths by poor development of the inner cell mass derivatives, It has previously been suggested that Ve may exert its action at the blastocyst stage by reducing the size of the inner cell mass, but no evidence for such a reduction was found. Most of the observations on Ve/Ve homozygotes are, however, consistent with the hypothesis that Ve exerts its action primarily on later primitive ectoderm development.


2009 ◽  
Vol 21 (1) ◽  
pp. 124
Author(s):  
J. E. Oliver ◽  
T. Delaney ◽  
J. N. Oswald ◽  
M. C. Berg ◽  
B. Oback ◽  
...  

Previous studies in the mouse have shown treatment of somatic cell nuclear transfer (SCNT) embryos with histone deacetylase inhibitors (HDACi) to significantly increase cloning efficiency (Kishigami S et al. 2006 BBRC 340, 183–189; van Thuan N 2007 Asian Reproductive Biology Society 4, 9 abst). Increasing histone acetylation may open donor chromatin allowing better access for oocyte cytoplasmic factors to facilitate reprogramming. Here, we determined the effect of two HDACi, Trichostatin A (TSA), and scriptaid (Sigma-Aldrich, Castle Hill, NSW, Australia), on bovine cloning efficiency. Zona-free SCNT was performed with serum starved fibroblasts fused to enucleated MII-arrested IVM oocytes. After 4 h, reconstructs were activated with 5 μm ionomycin and 2 mm 6-dimethylaminopurine (DMAP) and cultured individually in 5 μL drops of AgResearch synthetic oviduct fluid (SOF) medium. Treatment with HDACi commenced concomitant with the 4 h DMAP incubation and continued in SOF for the remainder of the treatment period; totalling either 18 or 48 h post activation (hpa). TSA concentrations examined were: 0, 5, 50, and 500 nm, with all treatments containing 0.5% DMSO (n = 1121). Following TSA treatment, increased histone (H) acetylation at lysine (K) of H4K5 was confirmed by semi-quantitative immunofluorescence at the eight-cell stage. Scriptaid concentrations examined were: 0, 5, 50, 250, and 1000 nm, with all treatments containing 0.5% DMSO during DMAP and 0.1% DMSO during IVC (n = 1059). In vitro development on Day 7 was expressed in terms of transferable quality embryos as a percentage of reconstructs cultured. Data were analyzed using a generalized linear model with binomial variation and logit link. Embryos from selected treatments were transferred singularly to recipient cows on Day 7 with pregnancy data analyzed using Fisher’s exact test. Day 7 in vitro development was significantly greater with 5 nm TSA treatment for 18 hpa compared to controls (47.1% v. 34.5%; P < 0.02). Treatment of embryos with TSA for 48 hpa had no effect at any concentration tested. In contrast, scriptaid treatment for 18 hpa had no effect in vitro, while exposure for 48 hpa at 1000 nm significantly increased the development of transferable quality embryos compared to 0 nm (44.0% v. 32.4%; P < 0.005). There was no significant difference in embryo survival rates at D150 of gestation between embryos treated with 0 or 5 nm TSA for 18 hpa (8/48 v. 10/48; 16.7% v. 20.8%). However, in vivo development at Day 150 of gestation following treatment of embryos with 1000 nm scriptaid for 48 hpa was significantly lower compared to controls (1/37 v. 6/31; 2.7% v. 19.4%; P < 0.05). Contrary to the mouse, TSA or scriptaid treatment as used in this study did not increase cloning efficiency in cattle. The use of various HDACi either alone or in combination with DNA demethylating agents may still prove beneficial for reprogramming following nuclear transfer. Supported by FRST C10X0303.


Development ◽  
1975 ◽  
Vol 34 (2) ◽  
pp. 467-484
Author(s):  
Michael I. Sherman ◽  
Sui Bi Atienza

Mouse blastocysts in culture have been treated with increasing concentrations of cytosine arabinoside, bromodeoxyuridine or Colcemid. Concentrations of all three antimetabolites have been found which interfere with neither hatching of the blastocysts from their zona pellucidae nor subsequent attachment of the blastocysts to the culture dish, but which eventually result in death of the inner cell mass (ICM) and its derivatives. The effect upon the ICM is selective at these antimetabolite concentrations since many or, in some cases, all trophoblast cells continue to survive, and by a number of criteria, undergo normal patterns of differentiation and development.


2004 ◽  
Vol 24 (3) ◽  
pp. 1168-1173 ◽  
Author(s):  
Erica D. Smith ◽  
Yanfei Xu ◽  
Brett N. Tomson ◽  
Cindy G. Leung ◽  
Yuko Fujiwara ◽  
...  

ABSTRACT More than blood (Mtb) is a novel gene that is widely expressed in mouse embryos prior to gastrulation but is subsequently restricted to specific tissues, including the developing central nervous system and hematopoietic organs. Since MTB is highly expressed in the fetal liver and developing thymus, we predicted that MTB would be required for hematopoiesis and that embryos deficient in MTB would die of anemia. Surprisingly, embryos with a targeted disruption of Mtb died prior to the initiation of blood cell development, immediately following implantation. This lethality is due to a defect in expansion of the inner cell mass (ICM), as Mtb −/− blastocysts failed to exhibit outgrowth of the ICM, both in vitro and in vivo. Furthermore, Mtb −/− blastocysts exhibited a higher frequency of apoptotic cells than wild-type or heterozygous blastocysts. These findings demonstrate that Mtb is a novel gene that is essential for early embryonic development.


Sign in / Sign up

Export Citation Format

Share Document