embryonic ectoderm
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 17)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Nicholas Cook ◽  
Jianping Chen ◽  
Jia Zhou ◽  
Daqing Wu

: The polycomb repressive complex 2 (PRC2) can methylate at lysine 27 of histone H3 at the trimethylation level (H3K27me3). This leads to gene silencing and is known to be dysregulated in many cancers. PRC2 is made up of three core subunits: EZH2, SUZ12, and EED. EED is essential for the regulation of PRC2 function by the binding to H3K27me3. Targeting the allosteric site within EED offers new strategies to disrupt the PRC2 activity. In this mini review, we summarize some of the recent developments in small molecules that target EED and its interaction with other core proteins in the PRC2 complex.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Nadine Hosny El Said ◽  
Francesco Della Valle ◽  
Peng Liu ◽  
Andreu Paytuví-Gallart ◽  
Sabir Adroub ◽  
...  

AbstractPRC2-mediated epigenetic function involves the interaction with long non-coding RNAs (lncRNAs). Although the identity of some of these RNAs has been elucidated in the context of developmental programs, their counterparts in postmitotic adult tissue homeostasis remain uncharacterized. To this aim, we used terminally differentiated postmitotic skeletal muscle cells in which oxidative stress induces the dynamic activation of PRC2-Ezh1 through Embryonic Ectoderm Develpment (EED) shuttling to the nucleus. We identify lncRNA Malat-1 as a necessary partner for PRC2-Ezh1-dependent response to oxidative stress. We show that in this pathway, PRC2-EZH1 dynamic assembly, and in turn stress induced skeletal muscle targeted genes repression, depends specifically on Malat-1. Our study reports about PRC2–RNA interactions in the physiological context of adaptive oxidative stress response and identifies the first lncRNA involved in PRC2-Ezh1 function.


2021 ◽  
Author(s):  
Takafumi Ichikawa ◽  
Hui Ting Zhang ◽  
Laura Panavaite ◽  
Anna Erzberger ◽  
Dimitri Fabrèges ◽  
...  

Upon implantation, mammalian embryos undergo major morphogenesis and key developmental processes such as body axis specification and gastrulation. However, limited accessibility obscures study of these crucial processes. Here, we develop an ex vivo Matrigel-collagen-based culture to recapitulate mouse development from E4.5 to 6.0. Our system not only recapitulates embryonic growth, axis initiation, and overall 3D architecture in 49% of cases, its compatibility with light-sheet microscopy enables study of cellular dynamics through automatic cell segmentation. We find that upon implantation, release of the increasing tension in the polar trophectoderm is necessary for its constriction and invagination. The resulting extra-embryonic ectoderm plays a key role in growth, morphogenesis and patterning of the neighboring epiblast, which subsequently gives rise to all embryonic tissues. This 3D-ex vivo system thus offers an unprecedented access to peri-implantation development for in toto monitoring, measurement and spatio-temporally controlled perturbation, revealing a mechano-chemical interplay between extra-embryonic and embryonic tissues.


2021 ◽  
Author(s):  
Matus Vojtek ◽  
Jingchao Zhang ◽  
Juanjuan Sun ◽  
Man Zhang ◽  
Ian Chambers

Primordial germ cells (PGCs) are induced in the embryo by signals, including BMP emanating from extra-embryonic ectoderm, that act on cells in the post-implantation epiblast. PGC development can be recapitulated in vitro through the exposure of epiblast-like cells (EpiLCs) to appropriate cytokines, resulting in differentiation into PGC-like cells (PGCLCs). Interestingly, the requirement for cytokines to induce PGCLCs can be bypassed by enforced expression of the transcription factor (TF) NANOG. However, the underlying mechanisms are not fully elucidated. Here, we show that Otx2 downregulation is essential to enable NANOG to induce PGCLC formation. Moreover, while previous work has shown that the direct NANOG target gene Esrrb can substitute for several functions of NANOG, enforced expression of ESRRB cannot promote PGCLC specification from EpiLCs. This appears to be due to differential downregulation of Otx2 by NANOG and ESRRB, since induction of ESRRB in Otx2+/- EpiLCs activates expression of the core PGC TFs, Blimp1, Prdm14 and Ap2γ and emergence of PGCLCs. This study illuminates the interplay of TFs occurring at the earliest stages of PGC specification from a state of competence.


2020 ◽  
Vol 6 (33) ◽  
pp. eaaz6477 ◽  
Author(s):  
Jiajia Wang ◽  
Lijun Yang ◽  
Chen Dong ◽  
Jincheng Wang ◽  
Lingli Xu ◽  
...  

Mutations in the polycomb repressive complex 2 (PRC2) can cause Weaver-like syndrome, wherein a patient cohort exhibits abnormal white matter; however, PRC2 functions in CNS myelination and regeneration remain elusive. We show here that H3K27me3, the PRC2 catalytic product, increases during oligodendrocyte maturation. Depletion of embryonic ectoderm development (EED), a core PRC2 subunit, reduces differentiation of oligodendrocyte progenitors (OPCs), and causes an OPC-to-astrocyte fate switch in a region-specific manner. Although dispensable for myelin maintenance, EED is critical for oligodendrocyte remyelination. Genomic occupancy and transcriptomic analyses indicate that EED establishes a chromatin landscape that selectively represses inhibitory WNT and bone morphogenetic protein (BMP) signaling, and senescence-associated programs. Blocking WNT or BMP pathways partially restores differentiation defects in EED-deficient OPCs. Thus, our findings reveal that EED/PRC2 is a crucial epigenetic programmer of CNS myelination and repair, while demonstrating a spatiotemporal-specific role of PRC2-mediated chromatin silencing in shaping oligodendrocyte identity and lineage plasticity.


2020 ◽  
Vol 63 (13) ◽  
pp. 7252-7267 ◽  
Author(s):  
Rohan Kalyan Rej ◽  
Changwei Wang ◽  
Jianfeng Lu ◽  
Mi Wang ◽  
Elyse Petrunak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document