trophoblast giant cells
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 9)

H-INDEX

29
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254674
Author(s):  
Hiromu Morimoto ◽  
Misuzu Ueno ◽  
Hideyuki Tanabe ◽  
Tomohiro Kono ◽  
Hidehiko Ogawa

Trophoblast giant cells (TGCs), a mouse trophoblast subtype, have large amounts of cytoplasm and high ploidy levels via endocycles. The diverse functions and gene expression profiles of TGCs have been studied well, but their nuclear structures remain unknown. In this study, we focus on Lamin B1, a nuclear lamina, and clarify its expression dynamics, regulation and roles in TGC functions. TGCs that differentiated from trophoblast stem cells were used. From days 0 to 9 after differentiation, the number of TGCs gradually increased, but the amount of LMNB1 peaked at day 3 and then slightly decreased. An immunostaining experiment showed that LMNB1-depleted TGCs increased after day 6 of differentiation. These LMNB1-depleted TGCs diffused peripheral localization of the heterochromatin marker H3K9me2 in the nuclei. However, LMINB1-knock down was not affected TGCs specific gene expression. We found that the death of TGCs also increased after day 6 of differentiation. Moreover, Lamin B1 loss and the cell death in TGCs were protected by 10−6 M progesterone. Our results conclude that progesterone protects against Lamin B1 loss and prolongs the life and function of TGCs.


2021 ◽  
Vol 22 (4) ◽  
pp. 1767
Author(s):  
Danny J. Schust ◽  
Elizabeth A. Bonney ◽  
Jun Sugimoto ◽  
Toshi Ezashi ◽  
R. Michael Roberts ◽  
...  

Multinucleate syncytialized trophoblast is found in three forms in the human placenta. In the earliest stages of pregnancy, it is seen at the invasive leading edge of the implanting embryo and has been called primitive trophoblast. In later pregnancy, it is represented by the immense, multinucleated layer covering the surface of placental villi and by the trophoblast giant cells found deep within the uterine decidua and myometrium. These syncytia interact with local and/or systemic maternal immune effector cells in a fine balance that allows for invasion and persistence of allogeneic cells in a mother who must retain immunocompetence for 40 weeks of pregnancy. Maternal immune interactions with syncytialized trophoblast require tightly regulated mechanisms that may differ depending on the location of fetal cells and their invasiveness, the nature of the surrounding immune effector cells and the gestational age of the pregnancy. Some specifically reflect the unique mechanisms involved in trophoblast cell–cell fusion (aka syncytialization). Here we will review and summarize several of the mechanisms that support healthy maternal–fetal immune interactions specifically at syncytiotrophoblast interfaces.


2020 ◽  
Vol 117 (9) ◽  
pp. 4642-4652 ◽  
Author(s):  
Jiude Mao ◽  
Ashish Jain ◽  
Nancy D. Denslow ◽  
Mohammad-Zaman Nouri ◽  
Sixue Chen ◽  
...  

Placental trophoblast cells are potentially at risk from circulating endocrine-disrupting chemicals, such as bisphenol A (BPA). To understand how BPA and the reputedly more inert bisphenol S (BPS) affect the placenta, C57BL6J mouse dams were fed 200 μg/kg body weight BPA or BPS daily for 2 wk and then bred. They continued to receive these chemicals until embryonic day 12.5, whereupon placental samples were collected and compared with unexposed controls. BPA and BPS altered the expression of an identical set of 13 genes. Both exposures led to a decrease in the area occupied by spongiotrophoblast relative to trophoblast giant cells (GCs) within the junctional zone, markedly reduced placental serotonin (5-HT) concentrations, and lowered 5-HT GC immunoreactivity. Concentrations of dopamine and 5-hydroxyindoleacetic acid, the main metabolite of serotonin, were increased. GC dopamine immunoreactivity was increased in BPA- and BPS-exposed placentas. A strong positive correlation between 5-HT+GCs and reductions in spongiotrophoblast to GC area suggests that this neurotransmitter is essential for maintaining cells within the junctional zone. In contrast, a negative correlation existed between dopamine+GCs and reductions in spongiotrophoblast to GC area ratio. These outcomes lead to the following conclusions. First, BPS exposure causes almost identical placental effects as BPA. Second, a major target of BPA/BPS is either spongiotrophoblast or GCs within the junctional zone. Third, imbalances in neurotransmitter-positive GCs and an observed decrease in docosahexaenoic acid and estradiol, also occurring in response to BPA/BPS exposure, likely affect the placental–brain axis of the developing mouse fetus.


2019 ◽  
Author(s):  
Pratik Home ◽  
Ananya Ghosh ◽  
Ram Parikshan Kumar ◽  
Avishek Ganguly ◽  
Bhaswati Bhattacharya ◽  
...  

AbstractThe placenta acts as a major organ for hematopoiesis. It is believed that placental hematopoietic stem and progenitor cells (HSPCs) migrate to the fetal liver to ensure optimum hematopoiesis in the developing embryo. The labyrinth vasculature in a mid-gestation mouse placenta provides a niche for the definitive hematopoietic stem cell (HSC) generation and expansion. It has been proposed that these processes are regulated by a host of paracrine factors secreted by trophoblast giant cells (TGCs) at the maternal-fetal interface. However, the molecular mechanism by which the TGCs regulate the hematoendothelial niche in a developing placenta is yet to be defined. Using a TGC-specific Gata2 and Gata3 double knockout mouse model, we show that the loss of GATA2 and GATA3 at the TGC layer leads to fetal growth retardation and embryonic death due to disruptions in the delicate hematopoietic-angiogenic balance in the developing placenta. Using single-cell RNA-Seq analyses, we also show that the loss of GATA factors in the TGCs results in the loss of HSC population within the placental labyrinth and is associated with defective placental angiogenesis. Interestingly, we also found that this TGC-specific GATA factor-loss leads to impaired differentiation and distribution of trophoblast progenitor cells. Our study helps to define the GATA-dependent non-autonomous signaling mechanisms of the primary parietal trophoblast giant cells by which it regulates the delicate hematopoietic-angiogenic balance in the developing placenta.


2019 ◽  
Vol 20 (18) ◽  
pp. 4530 ◽  
Author(s):  
Heewon Seo ◽  
Fuller W. Bazer ◽  
Robert C. Burghardt ◽  
Greg A. Johnson

During the peri-implantation period, multinucleated syncytia are formed in the sheep placenta. For over 20 years the scientific consensus has been that during trophoblast syncytialization in sheep, binucleate trophoblast giant cells (BNCs) differentiate from mononuclear trophoblast cells, and individual BNCs fuse with individual luminal epithelial (LE) cells to form trinucleate cells. These trophoblast–LE syncytial plaques then grow through continued BNC migration and fusion. Therefore, LE cells are thought to be incorporated into syncytial plaques. However, these ideas were based on electron microscopy studies, without benefit of molecular markers for BNC and LE cells to support conclusions. The aim of this study was to observe interactions between BNCs and uterine LE cells using immunohistochemical localization for molecular markers for BNCs and uterine LE cells. We performed immunofluorescence staining, laser capture microdissection, and TUNEL staining on the uterine–placental tissues of sheep during early placentation. We observed: (1) syncytial cells containing more than two nuclei within the trophoblast cell layer; (2) depolarized LE cells that express caspase 3 and stain positively for TUNEL; (3) engulfment of caspase 3-positive LE cells by trophoblast giant cells (TGCs) and empty spaces within the LE layer at sites of implantation; (4) rapid enlargement of syncytial plaques; and (5) E-cadherin and TUNEL-positive cells within the uterine stroma underlying degenerating LE was coincident with accumulation of CD45-positive cells at these sites. These data suggest that during early placentation: (1) fusion between trophoblasts is not limited to the formation of BNCs, and the term ‘trophoblast giant cell (TGC)’ may be appropriate; (2) LE cells undergo apoptosis; (3) apoptotic LE cells are eliminated by TGCs; (4) fusion is not limited to the incorporation of new BNCs but involves the lateral fusion between growing syncytial plaques; and (5) TGCs carry apoptotic LE cells away from the uterine–placental interface for elimination by immune cells within the stroma. These data indicate that uterine LE cells are not incorporated into syncytial plaques, but are engulfed and eliminated, and that early placentation in sheep is more similar to early placentation in humans than is currently understood in that both develop mononucleated cytotrophoblast and multinucleated syncytiotrophoblast layers of entirely placental origin. The elimination of LE cells by sheep TGCs might provide insights into elimination and penetration of LE cells during human embryo implantation.


Zygote ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 49-53
Author(s):  
Yuki Maruyama ◽  
Atsushi P. Kimura

SummaryIn eutherian mammals, the placenta plays a critical role in embryo development by supplying nutrients and hormones and mediating interaction with the mother. To establish the fine connection between mother and embryo, the placenta needs to be formed normally, but the mechanism of placental differentiation is not fully understood. We previously revealed that mouse prolyl oligopeptidase (POP) plays a role in trophoblast stem cell (TSC) differentiation into two placental cell types, spongiotrophoblasts (SpT) and trophoblast giant cells. Here, we focused on SpT differentiation and attempted to elucidate a molecular mechanism. ForAscl2,Arnt, andEgfrgenes that are indispensable for SpT formation, we found that a POP-specific inhibitor, SUAM-14746, significantly decreasedAscl2expression, which was consistent with a significant decrease in expression ofFlt1, a gene downstream ofAscl2. Although this downregulation was unlikely to be mediated by the PI3K-Akt pathway, our results indicated that POP controls TSC differentiation into SpT by regulating theAscl2gene.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Koji Hayakawa ◽  
Kanae Terada ◽  
Tomohiro Takahashi ◽  
Hidehiro Oana ◽  
Masao Washizu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document