116 INCORPORATION AND DEVELOPMENTAL TOXICITY OF QUANTUM DOT NANOPARTICLES IN AMPHIBIAN LARVAE

2017 ◽  
Vol 29 (1) ◽  
pp. 166 ◽  
Author(s):  
A. R. Julien ◽  
S. B. Park ◽  
C. K. Vance ◽  
P. L. Ryan ◽  
S. T. Willard ◽  
...  

The use of nanoparticles both commercially and pharmaceutically has increased over the past decade, including fluorescent quantum dot nanoparticles (QD) in biochemical research for in vivo imaging. Previous studies have reported the toxic effects of nanoparticles, but their effects on larval metamorphosis and animal development and growth have not been thoroughly examined. Additionally, the method of uptake of nanoparticles by larval systems is unknown. Amphibian larvae are an ideal model for assessing toxicity because of their sensitivity to environmental contaminants and rapid and easily observable developmental stages. We used Anaxyrus fowleri tadpoles to investigate QD (≤ 25 nm diameter) integration into larvae and possible deleterious effects on their growth and development. Tadpoles (A. fowleri; n = 5/group) were placed in 24-well plates containing 1 mL of distilled water and increasing concentrations of QD (0, 1, and 2 nM) 72 h post-hatch. The fluorescence emission of QD in wells was detected at various time points (1, 2, 24, 48, and 72 h) using the in vivo imaging system (IVIS). A subset of tadpoles was killed (MS-222) and sectioned for histopathology. Remaining tadpoles were monitored throughout development. Fluorescence emission of QD in sectioned tadpoles was visualised using an EVOS Cell Imaging System. Developmental metrics of living tadpoles were recorded until metamorphosis. Fluorescence intensity between controls and dosage groups were analysed by ANOVA-1, followed by Student’s l.s.d. test to evaluate the effects of QD concentration and exposure time. The threshold of significance was P < 0.05. The rate of incorporation of QD into tadpoles was determined using the equation y = C + Ao*2(–x/t1/2), where t1/2 is the half-life of QD remaining in solution. The IVIS imaging revealed a rapid decrease of QD fluorescence (total flux) signals from the aqueous tadpole environment. Decreases in fluorescence occurred within 1 h post-exposure and appeared dose and time dependent, with signal nearly gone within 48 h. Half-life of total flux (time necessary for tadpoles to absorb half of the QD in solution) is 20.75 h (R2 = 0.92) and 2.54 h (R2 = 0.96) for 1 nm and 2 nm QD in solution, respectively. The EVOS imaging revealed integration of QD and localization into tadpole tissues. Fluorescence was exclusively found within the mouth, gills, and sections of the intestinal lumen of exposed tadpoles within the first hour. Dose-dependent increases in fluorescence within tissue were observed at each time-point. No signal was observed in controls. In remaining live tadpoles, QD treated tadpoles were smaller in size [t(34) = 2.35, P = 0.024] than controls. Findings reveal that (1) A. fowleri tadpoles integrate and accumulate nanoparticles, without detectable excretion within 72 h post-exposure, and (2) nanoparticles impede normal tadpole development. Ongoing studies are determining the effects of QD exposure on complete tadpole metamorphosis. The work was supported by USDA-ARS Biophotonics Initiative grant #58–6402–3-018.

2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria Mir ◽  
Saba Ishtiaq ◽  
Samreen Rabia ◽  
Maryam Khatoon ◽  
Ahmad Zeb ◽  
...  

2013 ◽  
Vol 40 (1) ◽  
pp. 0104003
Author(s):  
翟鹏 Zhai Peng ◽  
许改霞 Xu Gaixia ◽  
朱小妹 Zhu Xiaomei ◽  
王晓梅 Wang Xiaomei ◽  
牛憨笨 Niu Hanben

2008 ◽  
Vol 4 (6) ◽  
pp. 307-319 ◽  
Author(s):  
Yun Xing ◽  
Jianghong Rao

2018 ◽  
Vol 26 (1) ◽  
pp. 138-139 ◽  
Author(s):  
Teruki Shimizu ◽  
Masatsugu Miyashita ◽  
Atsuko Fujihara ◽  
Fumiya Hongo ◽  
Osamu Ukimura ◽  
...  

2019 ◽  
Vol 64 (11) ◽  
pp. 115014 ◽  
Author(s):  
J Teuho ◽  
C Han ◽  
L Riehakainen ◽  
A Honkaniemi ◽  
M Tirri ◽  
...  

2008 ◽  
pp. 2331 ◽  
Author(s):  
W. Matthew Leevy ◽  
Timothy N. Lambert ◽  
James R. Johnson ◽  
Joshua Morris ◽  
Bradley D. Smith

2017 ◽  
Vol 55 (2) ◽  
pp. 429-435 ◽  
Author(s):  
Alicia Cawlfield ◽  
Brian Vesely ◽  
Franklyn Ngundam ◽  
Kirk Butler ◽  
Dylan Nugent ◽  
...  

2020 ◽  
Author(s):  
Patrick Keane ◽  
Matthew Ulrick ◽  
Nico Fair ◽  
Stephanie Homan

2019 ◽  
Author(s):  
Sage Z. Davis ◽  
Puspendra P. Singh ◽  
Katelyn M. Vendrely ◽  
Douglas A. Shoue ◽  
Lisa A. Checkley ◽  
...  

Abstract Background Tracking and understanding artemisinin resistance is key for preventing global setbacks in malaria eradication efforts. The ring-stage survival assay (RSA) is the current gold standard for in vitro artemisinin resistance phenotyping. However, the RSA has several drawbacks: it is relatively low throughput, has high variance due to microscopy readout, and correlates poorly with the current benchmark for in vivo resistance, patient clearance half-life post-artemisinin treatment. Here a modified RSA is presented, the extended Recovery Ring-stage Survival Assay (eRRSA), using 15 cloned patient isolates from Southeast Asia with a range of patient clearance half-lives, including parasite isolates with and without kelch13 mutations. Methods P. falciparum cultures were synchronized with single layer Percoll during the schizont stage of the erythrocytic cycle. Cultures were left to reinvade to early ring-stage and parasitemia was quantified using flow cytometry. Cultures were diluted to 2% hematocrit and 0.5% parasitemia in a 96-well plate to start the assay, allowing for increased throughput and decreased variability between biological replicates. Parasites were treated with 700nM of dihydroartemisinin or an equivalent amount of dimethyl sulfoxide (DMSO) for 6 h, washed three times in drug-free media, and incubated for 66 or 114 h, when samples were collected and frozen for PCR amplification. A SYBR Green-based quantitative PCR method was used to quantify the fold-change between treated and untreated samples. Results 15 cloned patient isolates from Southeast Asia with a range of patient clearance half-lives were assayed using the eRRSA. Due to the large number of pyknotic and dying parasites at 66 h post-exposure (72 h sample), parasites were grown for an additional cell cycle (114 h post-exposure, 120 h sample), which drastically improved correlation with patient clearance half-life compared to the 66 h post-exposure sample. A Spearman correlation of 0.8393 between fold change and patient clearance half-life was identified in these 15 isolates from Southeast Asia, which is the strongest correlation reported to date. Conclusions eRRSA drastically increases the efficiency and accuracy of in vitro artemisinin resistance phenotyping compared to the traditional RSA, which paves the way for extensive in vitro phenotyping of hundreds of artemisinin resistant parasites.


2014 ◽  
Vol 41 (5) ◽  
pp. 0504002
Author(s):  
朱小妹 Zhu Xiaomei ◽  
王晓梅 Wang Xiaomei ◽  
冯刚 Feng Gang ◽  
陈强 Chen Qiang ◽  
林桂淼 Lin Guimiao ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document