xenograft model
Recently Published Documents





2022 ◽  
Vol 22 (1) ◽  
Xin Zhang ◽  
Hongwei Zhang ◽  
Zhibin Liao ◽  
Jiacheng Zhang ◽  
Huifang Liang ◽  

Abstract Background The Src homology and collagen 4 (SHC4) is an important intracellular adaptor protein that has been shown to play a pro-cancer role in melanoma and glioma. However, the biological function and detailed mechanisms of SHC4 in hepatocellular carcinoma progression are unclear. This study aimed to evaluate the potential prognostic and treatment value of SHC4 in patients with HCC. Methods The expression status of SHC4 in HCC tissues were investigated by immunohistochemistry and western blotting. Clinical significance of SHC4 was evaluated in a large cohort of HCC patients. The effects of SHC4 repression or overexpression on migration, invasion, and tumor growth were detected by colony formation assay, wound healing, transwell assays, and xenograft assay. Cell cycle and EMT-related proteins were detected by western blotting and immunofluorescence. In addition, the molecular regulation between SHC4 and STAT3 signaling in HCC were discovered by western blotting, immunofluorescence and xenograft assay. Results SHC4 was overexpressed in HCC compared to adjacent normal liver tissues and increased SHC4 expression was associated with high AFP level, incomplete tumor encapsulation, poor tumor differentiation and poor prognosis. SHC4 was shown to enhance cell proliferation, colony formation, cells migration and invasion in vitro, and promotes cell cycle progression and EMT process in HCC cells. Tumor xenograft model assay confirmed the oncogenic role of SHC4 in tumorigenicity in nude mice. Moreover, activation of STAT3 signaling was found in the SHC4 overexpressed HCC cells and HCC tissues. Further intervention of STAT3 confirmed STAT3 as an important signaling pathway for the oncogenic role of SHC4 in HCC. Conclusions Together, our results reveal that SHC4 activates STAT3 signaling to promote HCC progression, which may provide new clinical ideas for the treatment of HCC.

2022 ◽  
Vol 14 (1) ◽  
pp. 242-252
Fereshteh Asgharzadeh ◽  
Alex Tarnava ◽  
Asma Mostafapour ◽  
Majid Khazaei ◽  
Tyler W LeBaron

Leukemia ◽  
2022 ◽  
Felix Seyfried ◽  
Felix Uli Stirnweiß ◽  
Alexandra Niedermayer ◽  
Stefanie Enzenmüller ◽  
Rebecca Louise Hörl ◽  

AbstractTargeting BCL-2, a key regulator of survival in B-cell malignancies including precursor B-cell acute lymphoblastic leukemia, has become a promising treatment strategy. However, given the redundancy of anti-apoptotic BCL-2 family proteins (BCL-2, BCL-XL, MCL-1), single targeting may not be sufficient. When analyzing the effects of BH3-mimetics selectively targeting BCL-XL and MCL-1 alone or in combination with the BCL-2 inhibitor venetoclax, heterogeneous sensitivity to either of these inhibitors was found in ALL cell lines and in patient-derived xenografts. Interestingly, some venetoclax-resistant leukemias were sensitive to the MCL-1-selective antagonist S63845 and/or BCL-XL-selective A-1331852 suggesting functional mutual substitution. Consequently, co-inhibition of BCL-2 and MCL-1 or BCL-XL resulted in synergistic apoptosis induction. Functional analysis by BH3-profiling and analysis of protein complexes revealed that venetoclax-treated ALL cells are dependent on MCL-1 and BCL-XL, indicating that MCL-1 or BCL-XL provide an Achilles heel in BCL-2-inhibited cells. The effect of combining BCL-2 and MCL-1 inhibition by venetoclax and S63845 was evaluated in vivo and strongly enhanced anti-leukemia activity was found in a pre-clinical patient-derived xenograft model. Our study offers in-depth molecular analysis of mutual substitution of BCL-2 family proteins in acute lymphoblastic leukemia and provides targets for combination treatment in vivo and in ongoing clinical studies.

2022 ◽  
Pratibha S. Binder ◽  
Yassar M. Hashim ◽  
James Cripe ◽  
Tommy Buchanan ◽  
Abigail Zamorano ◽  

Abstract Background: Ovarian cancer is initially responsive to frontline chemotherapy. Unfortunately, it often recurs and becomes resistant to available therapies and the survival rate for advanced and recurrent ovarian cancer is unacceptably low. We thus hypothesized that it would be possible to achieve more durable treatment responses by combining cisplatin chemotherapy with SW IV-134, a cancer-targeted peptide mimetic and inducer of cell death. SW IV-134 is a recently developed small molecule conjugate linking a sigma-2 ligand with a peptide analog (mimetic) of the intrinsic death pathway activator SMAC (second-mitochondria activator of caspases). The sigma-2 receptor is overexpressed in ovarian cancer and the sigma-2 ligand portion of the conjugate facilitates cancer selectivity. The effector portion of the conjugate is expected to synergize with cisplatin chemotherapy and the cancer selectivity is expected to reduce putative off-target toxicities. Methods: Ovarian cancer cell lines were treated with cisplatin alone, SW IV-134 alone and a combination of the two drugs. Treatment efficacy was determined using luminescent cell viability assays. Caspase-3/7,-8 and-9 activities were measured as complementary indicators of death pathway activation. Syngeneic mouse models and patient-derived xenograft (PDX) models of human ovarian cancer were studied for response to SW IV-134 and cisplatin monotherapy as well as combination therapy. Efficacy of the therapy was measured by tumor growth rate and survival as the primary readouts. Potential drug related toxicities were assessed at necropsy. Results: The combination treatment was consistently superior in multiple cell lines when compared to the single agents in vitro. The expected mechanism of tumor cell death, such as caspase activation, was confirmed using luminescent and flow cytometry-based assay systems. Combination therapy proved to be superior in both syngeneic and PDX-based murine models of ovarian cancer. Most notably, combination therapy resulted in a complete resolution of established tumors in all study animals in a patient-derived xenograft model of ovarian cancer. Conclusions: The addition of SW IV-134 in combination with cisplatin chemotherapy represents a promising treatment option that warrants further pre-clinical development and evaluation as a therapy for women with advanced ovarian cancer.

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 329
Kaoru Shibata ◽  
Nozomi Nishijima ◽  
Kaho Hirai ◽  
Saiichiro Watanabe ◽  
Tsuyoshi Yamanaka ◽  

Background: Despite recent advances in the early detection and treatment of TSCC patients, recurrence rates and survival rates have not improved. The high frequency of lymph node metastasis is one of the causes, and the drug development of new therapeutic mechanisms such as metastasis control is desired. Choline transporter-like protein 1 (CTL1) has attracted attention as a target molecule in cancer therapy. In this study, we examined the antitumor effects of Amb544925, a plant-derived CTL1 inhibitor. Methods: The TSCC cell line HSC-3 was used to measure [3H]choline uptake, cell survival, caspase activity, and cell migration. Xenograft model mice were prepared to verify the antitumor effect of Amb544925. Results: Amb544925 inhibited cell viability and increased caspase-3/7 activity at concentrations that inhibited choline uptake. Amb544925 and ceramide increased SMPD4 expression and suppressed surivivin expression. Furthermore, Amb544925 and ceramide inhibited the migration of HSC-3 cells. In the xenograft model mice, Amb544925 suppressed tumor growth and CTL1 mRNA expression. Conclusions: The plant-derived CTL1 inhibitor Amb544925 is a lead compound of a new anticancer agent exhibiting antitumor effects and inhibition of cell migration through the ceramide/survivin pathway.

2022 ◽  
Vol 23 (2) ◽  
pp. 689
Saya Nagasawa ◽  
Kazuhiro Ikeda ◽  
Daisuke Shintani ◽  
Chiujung Yang ◽  
Satoru Takeda ◽  

Gene structure alterations, such as chromosomal rearrangements that develop fusion genes, often contribute to tumorigenesis. It has been shown that the fusion genes identified in public RNA-sequencing datasets are mainly derived from intrachromosomal rearrangements. In this study, we explored fusion transcripts in clinical ovarian cancer specimens based on our RNA-sequencing data. We successfully identified an in-frame fusion transcript SPON1-TRIM29 in chromosome 11 from a recurrent tumor specimen of high-grade serous carcinoma (HGSC), which was not detected in the corresponding primary carcinoma, and validated the expression of the identical fusion transcript in another tumor from a distinct HGSC patient. Ovarian cancer A2780 cells stably expressing SPON1-TRIM29 exhibited an increase in cell growth, whereas a decrease in apoptosis was observed, even in the presence of anticancer drugs. The siRNA-mediated silencing of SPON1-TRIM29 fusion transcript substantially impaired the enhanced growth of A2780 cells expressing the chimeric gene treated with anticancer drugs. Moreover, a subcutaneous xenograft model using athymic mice indicated that SPON1-TRIM29-expressing A2780 cells rapidly generated tumors in vivo compared to control cells, whose growth was significantly repressed by the fusion-specific siRNA administration. Overall, the SPON1-TRIM29 fusion gene could be involved in carcinogenesis and chemotherapy resistance in ovarian cancer, and offers potential use as a diagnostic and therapeutic target for the disease with the fusion transcript.

Lili Han ◽  
Chen Huang ◽  
Xiaofei Wang ◽  
Dongdong Tong

Abstract Background Dysregulation of RNA binding protein (RBP) expression has been confirmed to be causally linked with tumorigenesis. The detailed biological effect and underlying mechanisms of the RBP GRSF1 in hepatocellular carcinoma (HCC) remain unclear. Methods HCC cells with stable knockdown of GRSF1 were established using two sh-RNA-encoding lentiviruses. The functions of GRSF1 in HCC were explored using MTT, colony formation, flow cytometry, and Transwell assays and a xenograft model. Transcriptomic sequencing in GRSF1-deficient MHCC-97H cells was carried out to identify the downstream effector of GRSF1. The regulatory mechanisms among GRSF1, YY1 and miR-30e-5p were investigated via RNA immunoprecipitation, luciferase, RNA pull-down and ChIP assays. Several in vivo assays were used to assess the selectivity of the small-molecule compound VE-821 in HCC and to confirm the absence of general toxicity in animal models. Results GRSF1 was frequently increased in HCC tissue and cells and was associated with worse clinical outcomes. GRSF1 functions as a novel oncogenic RBP by enhancing YY1 mRNA stability, and the GUUU motifs within the YY1 3`UTR 2663-2847 were the specific binding motifs for GRSF1. YY1 feedback promoted GRSF1 expression by binding to the GRSF1 promoter. In addition, YY1 was a critical target of miR-30e-5p, which was confirmed in this study to inhibit HCC hepatocarcinogenesis. GRSF1 and miR-30e-5p competitively regulated YY1 by binding to its 3`UTR 2663-2847 region. Finally, we identified that VE-821 blocked HCC progression by inhibiting the GRSF1/YY1 pathway. Conclusion This study revealed the interaction network among GRSF1, YY1 and miR-30e-5p, providing new insight into HCC pathogenesis, and indicated that VE821 may serve as a novel agent with potential for HCC treatment through inhibition of the GRSF1/YY1 axis.

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 306
Samyuktha Suresh ◽  
Solène Huard ◽  
Amélie Brisson ◽  
Fariba Némati ◽  
Rayan Dakroub ◽  

Identifying new therapeutic strategies for triple-negative breast cancer (TNBC) patients is a priority as these patients are highly prone to relapse after chemotherapy. Here, we found that protein arginine methyltransferase 1 (PRMT1) is highly expressed in all breast cancer subtypes. PRMT1 depletion decreases cell survival by inducing DNA damage and apoptosis in various breast cancer cell lines. Transcriptomic analysis and chromatin immunoprecipitation revealed that PRMT1 regulates the epidermal growth factor receptor (EGFR) and the Wnt signaling pathways, reported to be activated in TNBC. PRMT1 enzymatic activity is also required to stimulate the canonical Wnt pathway. Type I PRMT inhibitors decrease breast cancer cell proliferation and show anti-tumor activity in a TNBC xenograft model. These inhibitors display synergistic interactions with some chemotherapies used to treat TNBC patients as well as erlotinib, an EGFR inhibitor. Therefore, targeting PRMT1 in combination with these chemotherapies may improve existing treatments for TNBC patients.

2022 ◽  
Sumanta Samanta ◽  
Vadim Le Joncour ◽  
Olivia Wegrzyniak ◽  
Vigneshkumar Rangasami ◽  
Harri Ali-Loytty ◽  

The poor permeability of theranostic agents across the blood-brain-barrier (BBB) significantly hampers the development of new treatment modalities for neurological diseases. We have discovered a new biomimetic nanocarrier using heparin (HP) that effectively passes the BBB and targets glioblastoma. Specifically, we designed HP coated gold nanoparticles (HP-AuNPs) that were labeled with three different imaging modalities namely, fluorescein (FITC-HP-AuNP), radioisotope 68Gallium (68Ga-HP-AuNPs), and MRI active gadolinium (Gd-HP-AuNPs). The systemic infusion of FITC-HP-AuNPs in three different mouse strains (C57BL/6JRj, FVB, and NMRI-nude) displayed excellent penetration and revealed uniform distribution of fluorescent particles in the brain parenchyma (69-86%) with some accumulation in neurons (8-18%) and microglia (4-10%). Tail-vein administration of radiolabeled 68Ga-HP-AuNPs in healthy rats also showed 68Ga-HP-AuNP inside the brain parenchyma and in areas containing cerebrospinal fluid, such as the lateral ventricles, the cerebellum, and brain stem. Finally, tail-vein administration of Gd-HP-AuNPs (that display ~3 fold higher relaxivity than that of commercial Gd-DTPA) in an orthotopic glioblastoma (U87MG xenograft) model in nude mice demonstrated enrichment of T1-contrast at the intracranial tumor with a gradual increase in the contrast in the tumor region between 1h-3h. We believe, our finding offers the untapped potential of HP-derived-NPs to deliver cargo molecules for treating neurological disorders.

Sign in / Sign up

Export Citation Format

Share Document