Distribution, frequency of occurrence and symbiotic properties of the Australian native legume Trigonella suavissima Lindl. and its associated root-nodule bacteria

2010 ◽  
Vol 32 (4) ◽  
pp. 395 ◽  
Author(s):  
J. Brockwell ◽  
Catherine M. Evans ◽  
Alison M. Bowman ◽  
Alison McInnes

Trigonella suavissima Lindl. is an Australian native legume belonging to the tribe Trifolieae. It is an ephemeral species that is widely distributed in the arid interior of the continent where it occurs, following periodic inundation, on clay soils of the watercourse country of the Channel Country (far-western Queensland, north-east South Australia and north-western New South Wales). T. suavissima is the only member of its tribe that is endemic to Australia. Likewise, its root-nodule bacteria (Sinorhizobium sp.) may be the only member of its taxonomic group (S. meliloti, S. medicae) that is an Australian native. The distribution and frequency of occurrence of T. suavissima and the size of soil populations (density) of Sinorhizobium were monitored at 64 locations along inland river systems of the Channel Country. Measurements were made of (i) the nitrogen-fixing effectiveness of the symbioses between T. suavissima and strains of its homologous Sinorhizobium and (ii) the nitrogen-fixing effectiveness of the symbioses between legumes symbiotically related to T. suavissima and diverse strains of Sinorhizobium. It was concluded that the distribution and frequency of occurrence of T. suavissima is soil related. The species is most widespread on fine-textured clay soils with deep, self-mulching surfaces and high moisture-holding capacity. By contrast, the occurrence of T. suavissima is sporadic in the upper reaches of the inland river systems where the soils are poorly structured clays with lower moisture-holding capacity. Sinorhizobium is most abundant where the plant is most common. The nitrogen-fixing symbioses between T. suavissima and strains of Sinorhizobium isolated from soils across the region were consistently effective and often highly effective. Some of these strains fixed a little nitrogen with lucerne (Medicago sativa L.). T. suavissima also had some symbiotic (nitrogen-fixing) affinity with an exotic Trigonella (T. arabica Del.). The economic value of T. suavissima (and its symbiosis with Sinorhizobium) to the beef industry in the Channel Country is discussed.

2016 ◽  
Vol 39 (2) ◽  
pp. 222-233 ◽  
Author(s):  
Kelly Alexsandra Souza Menezes ◽  
Gersika Fakirra de Oliveira Nunes ◽  
Aline Araujo Sampaio ◽  
Aleksandro Ferreira Silva ◽  
Layane Silva Barbosa Souza ◽  
...  

Author(s):  
K. Lindström ◽  
P. Kokko-Gonzales ◽  
Z. Terefework ◽  
L. A. Räsänen

2002 ◽  
Vol 269 (1504) ◽  
pp. 2023-2027 ◽  
Author(s):  
Steven van Borm ◽  
Alfred Buschinger ◽  
Jacobus J. Boomsma ◽  
Johan Billen

1997 ◽  
Vol 44 (4) ◽  
pp. 819-825 ◽  
Author(s):  
L A Räsänen ◽  
R Russa ◽  
T Urbanik ◽  
A Choma ◽  
H Mayer ◽  
...  

Lipopolysaccharides (LPS) of Rhizobium galegae, a symbiotically nitrogen-fixing species of root-nodule bacteria, were isolated by the phenol-water method from strain HAMBI 1461, the LPS of which resembled enterobacterial smooth type LPS, and from strains HAMBI 1174 and HAMBI 1208, the LPSs of which resembled rough type LPS. The results of PAGE analysis of LPSs, Bio-Gel P2 gel filtration of polysaccharide fractions and the presence of deoxysugars and 4-O-methyl-deoxysugar both in the rough and smooth LPSs suggested that rough LPS contained a short O-antigenic polysaccharide for which we propose the name short O-chain LPS. Accordingly, the smooth LPS is called long O-chain LPS. Despite of the differences in the structure of LPS of R. galegae, all strains were equally effective in nodulating their hosts. The short O-chain LPS of R. galegae showed many features similar to those of phylogenetically related agrobacteria.


Author(s):  
B. R. Umarov

The results of molecular genetic analysis root nodule bacteria wild leguminous plants germinating in the Arid zones Central Asia can penetrate into various nitrogen-fixing microorganisms. Bacteria of plants Onobrychis transcaucasica and Onobrychis chorossanica origin are found bacteria in the class Alphaproteobacteria and some nitrogen-fixing bacteria which we are write were in the class of Betaproteobacteria.


1942 ◽  
Vol 19 (3) ◽  
pp. 361-371 ◽  
Author(s):  
R. H. Burris ◽  
P. W. Wilson

1932 ◽  
Vol 3 (1) ◽  
pp. 159-193 ◽  
Author(s):  
D. G. Laird

Microbiology ◽  
2021 ◽  
Vol 90 (4) ◽  
pp. 481-488
Author(s):  
A. A. Vladimirova ◽  
R. S. Gumenko ◽  
E. S. Akimova ◽  
Al. Kh. Baymiev ◽  
An. Kh. Baymiev

1999 ◽  
Vol 30 (3) ◽  
pp. 203-208 ◽  
Author(s):  
Luiz Antonio de Oliveira ◽  
Hélio Paracaima de Magalhães

Quantification of acidity tolerance in the laboratory may be the first step in rhizobial strain selection for the Amazon region. The present method evaluated rhizobia in Petri dishes with YMA medium at pH 6.5 (control) and 4.5, using scores of 1.0 (sensitive, "no visible" growth) to 4.0 (tolerant, maximum growth). Growth evaluations were done at 6, 9, 12, 15 and 18 day periods. This method permits preliminary selection of root nodule bacteria from Amazonian soils with statistical precision. Among the 31 rhizobia strains initially tested, the INPA strains 048, 078, and 671 presented scores of 4.0 at both pHs after 9 days of growth. Strain analyses using a less rigorous criterion (growth scores higher than 3.0) included in this highly tolerant group the INPA strains 511, 565, 576, 632, 649, and 658, which grew on the most diluted zone (zone 4) after 9 days. Tolerant strains still must be tested for nitrogen fixation effectiveness, competitiveness for nodule sites, and soil persistence before their recommendation as inoculants.


Sign in / Sign up

Export Citation Format

Share Document