scholarly journals A phosphopantetheinylating polyketide synthase producing a linear polyene to initiate enediyne antitumor antibiotic biosynthesis

2008 ◽  
Vol 105 (5) ◽  
pp. 1460-1465 ◽  
Author(s):  
J. Zhang ◽  
S. G. Van Lanen ◽  
J. Ju ◽  
W. Liu ◽  
P. C. Dorrestein ◽  
...  
2003 ◽  
Vol 47 (4) ◽  
pp. 1291-1296 ◽  
Author(s):  
Mikko Metsä-Ketelä ◽  
Kaisa Palmu ◽  
Tero Kunnari ◽  
Kristiina Ylihonko ◽  
Pekka Mäntsälä

ABSTRACT The biosynthesis pathways of two anthracyclines, nogalamycin and aclacinomycin, were directed toward angucyclines by using an angucycline-specific cyclase, pgaF, isolated from a silent antibiotic biosynthesis gene cluster. Addition of pgaF to a gene cassette that harbored the early biosynthesis genes of nogalamycin resulted in the production of two known angucyclinone metabolites, rabelomycin and its precursor, UWM6. Substrate flexibility of pgaF was demonstrated by replacement of the nogalamycin minimal polyketide synthase genes in the gene cassette with the equivalent aclacinomycin genes together with aknE2 and aknF, which specify the unusual propionate starter unit in aclacinomycin biosynthesis. This modification led to the production of a novel angucyclinone, MM2002, in which the expected ethyl side chain was incorporated into the fourth ring.


1999 ◽  
Vol 65 (6) ◽  
pp. 2703-2709 ◽  
Author(s):  
Tohru Dairi ◽  
Yoshimitsu Hamano ◽  
Tamotsu Furumai ◽  
Toshikazu Oki

ABSTRACT A self-cloning system for Actinomadura verrucosospora, a producer of the angucyclic antibiotic pradimicin A (PRM A), has been developed. The system is based on reproducible and reliable protoplasting and regeneration conditions for A. verrucosospora and a novel plasmid vector that consists of a replicon from a newly found Actinomadura plasmid and a selectable marker cloned from the Actinomadurastrain. The system has an efficiency of more than 105CFU/microgram of DNA. Using this system, we have cloned and identified the polyketide synthase (PKS) genes essential for PRM A biosynthesis from A. verrucosospora. Nucleotide sequence analysis of the 3.5-kb SalI-SphI fragment showed that ketosynthase subunits (open reading frame 1 [ORF1] and ORF2) of the essential PKS genes have strong similarities (59 to 89%) to those for angucyclic antibiotic biosynthesis.


2019 ◽  
Vol 11 (10) ◽  
pp. 906-912 ◽  
Author(s):  
Joleen Masschelein ◽  
Paulina K. Sydor ◽  
Christian Hobson ◽  
Rhiannon Howe ◽  
Cerith Jones ◽  
...  

2000 ◽  
Vol 44 (2) ◽  
pp. 382-392 ◽  
Author(s):  
Wen Liu ◽  
Ben Shen

ABSTRACT C-1027, the most potent member of the enediyne antitumor antibiotic family, is produced by Streptomyces globisporus C-1027 and consists of an apoprotein (encoded by the cagA gene) and a nonpeptidic chromophore. The C-1027 chromophore could be viewed as being derived biosynthetically from a benzoxazolinate, a deoxyamino hexose, a β-amino acid, and an enediyne core. By adopting a strategy for cloning of the C-1027 biosynthesis gene cluster by mapping a putative dNDP-glucose 4,6-dehydratase (NGDH) gene to cagA, we have localized 75 kb of contiguous DNA from S. globisporus. DNA sequence analysis of two regions of the cloned gene cluster revealed two genes, sgcA and sgcB, that encode an NGDH enzyme and a transmembrane efflux protein, respectively, and confirmed that the cagA gene resides approximately 14 kb upstream of the sgcAB locus. The involvement of the cloned gene cluster in C-1027 biosynthesis was demonstrated by disrupting the sgcA gene to generate C-1027-nonproducing mutants and by complementing the sgcAmutants in vivo to restore C-1027 production. These results represent the first cloning of a gene cluster for enediyne antitumor antibiotic biosynthesis and provide a starting point for future genetic and biochemical investigations of C-1027 biosynthesis.


2015 ◽  
Vol 112 (33) ◽  
pp. 10359-10364 ◽  
Author(s):  
Ming Ma ◽  
Jeremy R. Lohman ◽  
Tao Liu ◽  
Ben Shen

Leinamycin (LNM) is a sulfur-containing antitumor antibiotic featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety is essential for LNM’s antitumor activity, by virtue of its ability to generate an episulfonium ion intermediate capable of alkylating DNA. We have previously cloned and sequenced the lnm gene cluster from Streptomyces atroolivaceus S-140. In vivo and in vitro characterizations of the LNM biosynthetic machinery have since established that: (i) the 18-membered macrolactam backbone is synthesized by LnmP, LnmQ, LnmJ, LnmI, and LnmG, (ii) the alkyl branch at C-3 of LNM is installed by LnmK, LnmL, LnmM, and LnmF, and (iii) leinamycin E1 (LNM E1), bearing a thiol moiety at C-3, is the nascent product of the LNM hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Sulfur incorporation at C-3 of LNM E1, however, has not been addressed. Here we report that: (i) the bioinformatics analysis reveals a pyridoxal phosphate (PLP)-dependent domain, we termed cysteine lyase (SH) domain (LnmJ-SH), within PKS module-8 of LnmJ; (ii) the LnmJ-SH domain catalyzes C-S bond cleavage by using l-cysteine and l-cysteine S-modified analogs as substrates through a PLP-dependent β-elimination reaction, establishing l-cysteine as the origin of sulfur at C-3 of LNM; and (iii) the LnmJ-SH domain, sharing no sequence homology with any other enzymes catalyzing C-S bond cleavage, represents a new family of PKS domains that expands the chemistry and enzymology of PKSs and might be exploited to incorporate sulfur into polyketide natural products by PKS engineering.


ChemBioChem ◽  
2010 ◽  
Vol 11 (18) ◽  
pp. 2506-2512 ◽  
Author(s):  
Roberta Teta ◽  
Mihaela Gurgui ◽  
Eric J. N. Helfrich ◽  
Stefan Künne ◽  
Andreas Schneider ◽  
...  

1991 ◽  
Vol 332 (1263) ◽  
pp. 107-114 ◽  

This paper gives an overview of existing knowledge concerning the structure and deduced functions of polyketide synthases active in antibiotic-producing streptomycetes. Using monensin A as an example of a structurally complex polyketide metabolite, the problem of understanding how individual strains of microorganism are ‘programmed’ to produce a given polyketide metabolite is first outlined. The question then arises, how is the programming of polyketide assembly related to the structural organization of individual polyketide synthase complexes at the biochemical and genetic levels? Experimental results that help to illuminate these relations are described, in particular, those giving information about the structures and deduced functions of polyketide synthases involved in aromatic polyketide biosynthesis (actinorhodin, granaticin, tetracenomycin, whiE spore pigment and an act homologous region from the monensin-producing organism), as well as the macrolide polyketide synthase active in the biosynthesis of 6-deoxyerythronolide A.


2013 ◽  
Vol 9 (10) ◽  
pp. 610-615 ◽  
Author(s):  
Xiaoyu Tang ◽  
Kornelia Eitel ◽  
Leonard Kaysser ◽  
Andreas Kulik ◽  
Stephanie Grond ◽  
...  

2004 ◽  
Vol 70 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Elizabeth A. B. Emmert ◽  
Amy K. Klimowicz ◽  
Michael G. Thomas ◽  
Jo Handelsman

ABSTRACT Zwittermicin A represents a new chemical class of antibiotic and has diverse biological activities, including suppression of oomycete diseases of plants and potentiation of the insecticidal activity of Bacillus thuringiensis. To identify genes involved in zwittermicin A production, we generated 4,800 transposon mutants of B. cereus UW101C and screened them for zwittermicin A accumulation. Nine mutants did not produce detectable zwittermicin A, and one mutant produced eightfold more than the parent strain. The DNA flanking the transposon insertions in six of the nine nonproducing mutants contains significant sequence similarity to genes involved in peptide and polyketide antibiotic biosynthesis. The mutant that overproduced zwittermicin A contained a transposon insertion immediately upstream from a gene that encodes a deduced protein that is a member of the MarR family of transcriptional regulators. Three genes identified by the mutant analysis mapped to a region that was previously shown to carry the zwittermicin A self-resistance gene, zmaR, and a biosynthetic gene (E. A. Stohl, J. L. Milner, and J. Handelsman, Gene 237:403-411, 1999). Further sequencing of this region revealed genes proposed to encode zwittermicin A precursor biosynthetic enzymes, in particular, those involved in the formation of the aminomalonyl- and hydroxymalonyl-acyl carrier protein intermediates. Additionally, nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) homologs are present, suggesting that zwittermicin A is synthesized by a mixed NRPS/PKS pathway.


Sign in / Sign up

Export Citation Format

Share Document