homologous region
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 36)

H-INDEX

39
(FIVE YEARS 2)

Author(s):  
Mohammad Rafiul Hoque ◽  
Myat Htut Nyunt ◽  
Jin-Hee Han ◽  
Fauzi Muh ◽  
Seong-Kyun Lee ◽  
...  

The Plasmodium ovale curtisi (Poc) prevalence has increased substantially in sub-Saharan African countries as well as regions of Southeast Asia. Poc parasite biology has not been explored much to date; in particular, the invasion mechanism of this malaria parasite remains unclear. In this study, the binding domain of the Duffy binding protein of P. ovale curtisi (PocDBP) was characterized as an important ligand for reticulocyte invasion. The homologous region of the P. vivax Duffy binding protein in PocDBP, named PocDBP-RII herein, was selected, and the recombinant PocDBP-RII protein was expressed in an Escherichia coli system. This was used to analyze reticulocyte binding activity using fluorescence-activated cell sorting and immune serum production in rabbits. The binding specificity was proven by treating reticulocytes with trypsin, chymotrypsin and neuraminidase. The amino acid sequence homology in the N-terminal Cys-rich region was found to be ~ 44% between PvDBP and PocDBP. The reticulocyte binding activity of PocDBP-RII was significantly higher than the erythrocyte binding activity and was concentration dependent. Erythrocyte binding was reduced significantly by chymotrypsin treatment and inhibited by an anti-PocDBP-RII antibody. This finding suggests that PocDBP may be an important ligand in the reticulocyte invasion process of P. ovale curtisi.


2021 ◽  
Vol 11 (11) ◽  
pp. 1533
Author(s):  
Inès Rachidi ◽  
Lorella Minotti ◽  
Guillaume Martin ◽  
Dominique Hoffmann ◽  
Julien Bastin ◽  
...  

Direct cortical stimulation (DCS) in epilepsy surgery patients has a long history of functional brain mapping and seizure triggering. Here, we review its findings when applied to the insula in order to map the insular functions, evaluate its local and distant connections, and trigger seizures. Clinical responses to insular DCS are frequent and diverse, showing a partial segregation with spatial overlap, including a posterior somatosensory, auditory, and vestibular part, a central olfactory-gustatory region, and an anterior visceral and cognitive-emotional portion. The study of cortico-cortical evoked potentials (CCEPs) has shown that the anterior (resp. posterior) insula has a higher connectivity rate with itself than with the posterior (resp. anterior) insula, and that both the anterior and posterior insula are closely connected, notably between the homologous insular subdivisions. All insular gyri show extensive and complex ipsilateral and contralateral extra-insular connections, more anteriorly for the anterior insula and more posteriorly for the posterior insula. As a rule, CCEPs propagate first and with a higher probability around the insular DCS site, then to the homologous region, and later to more distal regions with fast cortico-cortical axonal conduction delays. Seizures elicited by insular DCS have rarely been specifically studied, but their rate does not seem to differ from those of other DCS studies. They are mainly provoked from the insular seizure onset zone but can also be triggered by stimulating intra- and extra-insular early propagation zones. Overall, in line with the neuroimaging studies, insular DCS studies converge on the view that the insula is a multimodal functional hub with a fast propagation of information, whose organization helps understand where insular seizures start and how they propagate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md. Lutfur Rahman ◽  
Toshinori Hyodo ◽  
Sivasundaram Karnan ◽  
Akinobu Ota ◽  
Muhammad Nazmul Hasan ◽  
...  

AbstractTandem paired nicking (TPN) is a method of genome editing that enables precise and relatively efficient targeted knock-in without appreciable restraint by p53-mediated DNA damage response. TPN is initiated by introducing two site-specific nicks on the same DNA strand using Cas9 nickases in such a way that the nicks encompass the knock-in site and are located within a homologous region between a donor DNA and the genome. This nicking design results in the creation of two nicks on the donor DNA and two in the genome, leading to relatively efficient homology-directed recombination between these DNA fragments. In this study, we sought to identify the optimal design of TPN experiments that would improve the efficiency of targeted knock-in, using multiple reporter systems based on exogenous and endogenous genes. We found that efficient targeted knock-in via TPN is supported by the use of 1700–2000-bp donor DNAs, exactly 20-nt-long spacers predicted to be efficient in on-target cleavage, and tandem-paired Cas9 nickases nicking at positions close to each other. These findings will help establish a methodology for efficient and precise targeted knock-in based on TPN, which could broaden the applicability of targeted knock-in to various fields of life science.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256863
Author(s):  
Peizhen Yang ◽  
Ericka Havecker ◽  
Matthew Bauer ◽  
Carl Diehl ◽  
Bill Hendrix ◽  
...  

In both the pharmaceutical and agricultural fields, RNA-based products have capitalized upon the mechanism of RNA interference for targeted reduction of gene expression to improve phenotypes and traits. Reduction in gene expression by RNAi is the result of a small interfering RNA (siRNA) molecule binding to an ARGONAUTE (AGO) protein and directing the effector complex to a homologous region of a target gene’s mRNA. siRNAs properties that govern RNA-AGO association have been studied in detail. The siRNA 5’ nucleotide (nt) identity has been demonstrated in plants to be an important property responsible for directing association of endogenous small RNAs with different AGO effector proteins. However, it has not been investigated whether the 5’ nt identity is an efficacious determinant for topically-applied chemically synthesized siRNAs. In this study, we employed a sandpaper abrasion method to study the silencing efficacies of topically-applied 21 base-pair siRNA duplexes. The MAGNESIUM CHELATASE and GREEN FLUORESCENT PROTEIN genes were selected as endogenous and transgenic gene targets, respectively, to assess the molecular and phenotypic effects of gene silencing. Collections of siRNA variants with different 5’ nt identities and different pairing states between the 5’ antisense nt and its match in the sense strand of the siRNA duplex were tested for their silencing efficacy. Our results suggest a flexibility in the 5’ nt requirement for topically applied siRNA duplexes in planta and highlight the similarity of 5’ thermodynamic rules governing topical siRNA efficacy across plants and animals.


2021 ◽  
Vol 14 ◽  
Author(s):  
Ilaria Favicchia ◽  
Gemma Flore ◽  
Sara Cioffi ◽  
Gabriella Lania ◽  
Antonio Baldini ◽  
...  

ObjectivesTbx1 mutant mice are a widely used model of 22q11.2 deletion syndrome (22q11.2DS) because they manifest a broad spectrum of physical and behavioral abnormalities that is similar to that found in 22q11.2DS patients. In Tbx1 mutants, brain abnormalities include changes in cortical cytoarchitecture, hypothesized to be caused by the precocious differentiation of cortical progenitors. The objectives of this research are to identify drugs that have efficacy against the brain phenotype, and through a phenotypic rescue approach, gain insights into the pathogenetic mechanisms underlying Tbx1 haploinsufficiency.Experimental ApproachDisease model: Tbx1 heterozygous and homozygous embryos. We tested the ability of two FDA-approved drugs, the LSD1 inhibitor Tranylcypromine and Vitamin B12, to rescue the Tbx1 mutant cortical phenotype. Both drugs have proven efficacy against the cardiovascular phenotype, albeit at a much reduced level compared to the rescue achieved in the brain.MethodsIn situ hybridization and immunostaining of histological brain sections using a subset of molecular markers that label specific cortical regions or cell types. Appropriate quantification and statistical analysis of gene and protein expression were applied to identify cortical abnormalities and to determine the level of phenotypic rescue achieved.ResultsCortical abnormalities observed in Tbx1 mutant embryos were fully rescued by both drugs. Intriguingly, rescue was obtained with both drugs in Tbx1 homozygous mutants, indicating that they function through mechanisms that do not depend upon Tbx1 function. This was particularly surprising for Vitamin B12, which was identified through its ability to increase Tbx1 gene expression.ConclusionTo our knowledge, this is only the second example of drugs to be identified that ameliorate phenotypes caused by the mutation of a single gene from the 22q11.2 homologous region of the mouse genome. This one drug-one gene approach might be important because there is evidence that the brain phenotype in 22q11.2DS patients is multigenic in origin, unlike the physical phenotypes, which are overwhelmingly attributable to Tbx1 haploinsufficiency. Therefore, effective treatments will likely involve the use of multiple drugs that are targeted to the function of specific genes within the deleted region.


Author(s):  
Michel Belyk ◽  
Russell Banks ◽  
Anna Tendera ◽  
Robert Chen ◽  
Deryk S. Beal

AbstractNeurophysiological experiments using transcranial magnetic stimulation (TMS) have sought to probe the function of the motor division of the corpus callosum. Primary motor cortex sends projections via the corpus callosum with a net inhibitory influence on the homologous region of the opposite hemisphere. Interhemispheric inhibition (IHI) experiments probe this inhibitory pathway. A test stimulus (TS) delivered to the motor cortex in one hemisphere elicits motor evoked potentials (MEPs) in a target muscle, while a conditioning stimulus (CS) applied to the homologous region of the opposite hemisphere modulates the effect of the TS. We predicted that large CS MEPs would be associated with increased IHI since they should be a reliable index of how effectively contralateral motor cortex was stimulated and therefore of the magnitude of interhemispheric inhibition. However, we observed a strong tendency for larger CS MEPs to be associated with reduced interhemispheric inhibition which in the extreme lead to a net effect of facilitation. This surprising effect was large, systematic, and observed in nearly all participants. We outline several hypotheses for mechanisms which may underlie this phenomenon to guide future research.


Author(s):  
Yiding Xu ◽  
Huanyu Qiao

During meiotic prophase I, X and Y chromosomes in mammalian spermatocytes only stably pair at a small homologous region called the pseudoautosomal region (PAR). However, the rest of the sex chromosomes remain largely unsynapsed. The extensive asynapsis triggers transcriptional silencing - meiotic sex chromosome inactivation (MSCI). Along with MSCI, a special nuclear territory, sex body or XY body, forms. In the early steps of MSCI, DNA damage response (DDR) factors, such as BRCA1, ATR, and γH2AX, function as sensors and effectors of the silencing signals. Downstream canonical repressive histone modifications, including methylation, acetylation, ubiquitylation, and SUMOylation, are responsible for the transcriptional repression of the sex chromosomes. Nevertheless, mechanisms of the sex-body formation remain unclear. Liquid-liquid phase separation (LLPS) may drive the formation of several chromatin subcompartments, such as pericentric heterochromatin, nucleoli, inactive X chromosomes. Although several proteins involved in phase separation are found in the sex bodies, when and whether these proteins exert functions in the sex-body formation and MSCI is still unknown. Here, we reviewed recent publications on the mechanisms of MSCI and LLPS, pointed out the potential link between LLPS and the formation of sex bodies, and discussed its implications for future research.


Genome ◽  
2021 ◽  
Author(s):  
Mark A.A. Minow ◽  
Luis M. Ávila ◽  
Lewis N Lukens ◽  
Vincenzo Rossi ◽  
Joseph Colasanti

Near isogenic lines (NILs) are a classical genetic tool used to dissect the actions of an allele when placed in a uniform genetic background. Although the goal of NIL creation is to examine the effects of a single allele in isolation, DNA linked to the allele is invariably retained and can confound any allele specific effects. In addition to genetic variation, highly polymorphic species like <i>Zea mays</i> will contain introgressed polymorphisms encompassing transposable elements (TEs) and the cis acting small RNA (sRNA) that represses them. Through transcriptomics, we described the sRNA and TE transcriptional expression differences between a W22-derived introgression and its homologous B73 region. As anticipated, many sRNA expression differences were found. Unexpectedly, however, 24nt sRNA expression over the introgressed region was low overall compared to both the homologous B73 region and the rest of the genome. Across the introgression, low sRNA expression was accompanied by increased TE transcription. Possible explanations for the observed trends in sRNA and TE expression across the introgression are discussed. These findings support the notion that any introgressed allele is in an epigenetic environment distinct from that found at the allele from the recurrent parent. Additionally, these results suggest that further study of sRNA expression levels during the introgression process is warranted.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3171
Author(s):  
Sandrine M. Caputo ◽  
Dominique Telly ◽  
Adrien Briaux ◽  
Julie Sesen ◽  
Maurizio Ceppi ◽  
...  

Background: Large genomic rearrangements (LGR) in BRCA1 consisting of deletions/duplications of one or several exons have been found throughout the gene with a large proportion occurring in the 5′ region from the promoter to exon 2. The aim of this study was to better characterize those LGR in French high-risk breast/ovarian cancer families. Methods: DNA from 20 families with one apparent duplication and nine deletions was analyzed with a dedicated comparative genomic hybridization (CGH) array, high-resolution BRCA1 Genomic Morse Codes analysis and Sanger sequencing. Results: The apparent duplication was in fact a tandem triplication of exons 1 and 2 and part of intron 2 of BRCA1, fully characterized here for the first time. We calculated a causality score with the multifactorial model from data obtained from six families, classifying this variant as benign. Among the nine deletions detected in this region, eight have never been identified. The breakpoints fell in six recurrent regions and could confirm some specific conformation of the chromatin. Conclusions: Taken together, our results firmly establish that the BRCA1 5′ region is a frequent site of different LGRs and highlight the importance of the segmental duplication and Alu sequences, particularly the very high homologous region, in the mechanism of a recombination event. This also confirmed that those events are not systematically deleterious.


2021 ◽  
Author(s):  
Aratrika Saha ◽  
J. Patrick Connick ◽  
James R. Reed ◽  
Charles S. Lott ◽  
Wayne L. Backes

Previous studies showed that cytochrome P450 1A2 (CYP1A2) forms a homomeric complex that influences its metabolic characteristics. Specifically, CYP1A2 activity exhibits a sigmoidal response as a function of NADPH-cytochrome P450 reductase (POR) concentration and is consistent with an inhibitory CYP1A2•CYP1A2 complex that is disrupted by increasing [POR] (Reed et al., (2012) Biochem. J. 446, 489-497). The goal of this study was to identify the CYP1A2 contact regions involved in homomeric complex formation. Examination of X‑ray structure of CYP1A2 implicated the proximal face in homomeric complex formation. Consequently, involvement of residues L91-K106 (P1 region) located on the proximal face of CYP1A2 was investigated. This region was replaced with the homologous region of CYP2B4 (T81-S96) and the protein was expressed in HEK293T/17 cells. Complex formation and its disruption was observed using bioluminescence resonance energy transfer (BRET). The P1‑CYP1A2 (CYP1A2 with the modified P1 region) exhibited a decreased BRET signal as compared to wild-type CYP1A2 (WT‑CYP1A2). On further examination, P1‑CYP1A2 was much less effective at disrupting the CYP1A2•CYP1A2 homomeric complex, when compared to WT‑CYP1A2, thereby demonstrating impaired binding of P1‑CYP1A2 to WT‑CYP1A2 protein. In contrast, the P1 substitution did not affect its ability to form a heteromeric complex with CYP2B4.  P1‑CYP1A2 also showed decreased activity as compared to WT‑CYP1A2, which was consistent with a decrease in the ability of P1‑CYP1A2 to associate with WT‑POR, again implicating the P1 region in POR binding. These results indicate that the contact region responsible for the CYP1A2•CYP1A2 homomeric complex resides in the proximal region of the protein.


Sign in / Sign up

Export Citation Format

Share Document