biosynthesis gene
Recently Published Documents


TOTAL DOCUMENTS

401
(FIVE YEARS 83)

H-INDEX

58
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Rizka Tamania Saptari ◽  
Rizkita Rachmi Esyanti ◽  
Riza Arief Putranto

Abstract Stevia (Stevia rebaudiana Bertoni) contains sweet compound widely used as natural sweetener, steviol glycoside (SG). SG is a diterpenoid secondary metabolite synthesized from ent-kaurenoic acid, the same precursor of Gibberellin (GA). Therefore, in this study, a GA inhibitor, Daminozide (0, 10, 20 ppm) was used to block ent-kaurenoic acid conversion towards GA synthesis in attempt to increase SG content of stevia propagated in Temporary Immersion Bioreactor (TIB). Daminozide in 10 mg/L was observed to be the optimum concentration which increased biomass weight and SG content (stevioside and rebaudioside A) up to 40%. The treatment also increased transcripts accumulation of genes enrolled in SG biosynthesis, such as SrKA13H, SrUGT85C2, and SrUGT76G1, indicating SG pathway become more active due to the inhibition of GA pathway. Furthermore, the inhibition of GA was also indicated by the upregulated expression of GA biosynthesis gene (GA3ox) as the result of feedback regulation, and the downregulated expression of GA catabolism gene (GA2ox2) as the result of feed-forward regulation caused by inhibitor treatment.


2021 ◽  
Vol 9 (12) ◽  
pp. 2490
Author(s):  
Chunxia Xu ◽  
Huaqin Ruan ◽  
Wenjie Cai ◽  
Christian Staehelin ◽  
Weijun Dai

Exopolysaccharides (EPS) play critical roles in rhizobium-plant interactions. However, the EPS biosynthesis pathway in Bradyrhizobium diazoefficiens USDA110 remains elusive. Here we used transposon (Tn) mutagenesis with the aim to identify genetic elements required for EPS biosynthesis in B. diazoefficiens USDA110. Phenotypic screening of Tn5 insertion mutants grown on agar plates led to the identification of a mutant with a transposon insertion site in the blr2358 gene. This gene is predicted to encode a phosphor-glycosyltransferase that transfers a phosphosugar onto a polyprenol phosphate substrate. The disruption of the blr2358 gene resulted in defective EPS synthesis. Accordingly, the blr2358 mutant showed a reduced capacity to induce nodules and stimulate the growth of soybean plants. Glycosyltransferase genes related to blr2358 were found to be well conserved and widely distributed among strains of the Bradyrhizobium genus. In conclusion, our study resulted in identification of a gene involved in EPS biosynthesis and highlights the importance of EPS in the symbiotic interaction between USDA110 and soybeans.


Plant Science ◽  
2021 ◽  
pp. 111156
Author(s):  
Kinfemichael Geressu Asfaw ◽  
Qiong Liu ◽  
Rose Eghbalian ◽  
Sabine Purper ◽  
Sahar Akaberi ◽  
...  

2021 ◽  
Author(s):  
Boas Pucker ◽  
Samuel F. Brockington

Here we respond to Zhou et al., 2020 'Combined Transcriptome and Metabolome analysis of Pitaya fruit unveiled the mechanisms underlying Peel and pulp color formation' published in BMC Genomics. Given the evolutionary conserved anthocyanin biosynthesis pathway in betalain-pigmented species, we are open to the idea that species with both anthocyanins and betalains might exist. However, in absence of LC-MS/MS spectra, apparent lack of biological replicates, and no comparison to authentic standards, the findings of Zhou et al., 2020 are not a strong basis to propose the presence of anthocyanins in betalain-pigmented pitaya. In addition, our re-analysis of the datasets indicates the misidentification of important genes and the omission of key anthocyanin synthesis genes ANS and DFR. Finally, our re-analysis of the RNA-Seq dataset reveals no correlation between anthocyanin biosynthesis gene expression and pigment status.


2021 ◽  
Vol 2 ◽  
Author(s):  
Yu Yan ◽  
Biyun Xiang ◽  
Qiaohong Xie ◽  
Yamin Lin ◽  
Guangya Shen ◽  
...  

Gα signaling pathway as well as the global regulator LaeA were demonstrated to positively regulate the biosynthesis of chaetoglobosin A (ChA), a promising biotic pesticide produced by Chaetomium globosum. Recently, the regulatory function of Zn2Cys6 binuclear finger transcription factor CgcheR that lies within the ChA biosynthesis gene cluster has been confirmed. However, CgcheR was not merely a pathway specific regulator. In this study, we showed that the homologs gene of CgcheR (designated as Cgtf1) regulate ChA biosynthesis and sporulation in C. globosum NK102. More importantly, RNA-seq profiling demonstrated that 1,388 genes were significant differentially expressed as Cgtf1 deleted. Among them, a putative C2H2 transcription factor, named Cgtf6, showed the highest gene expression variation in zinc-binding proteins encoding genes as Cgtf1 deleted. qRT-PCR analysis confirmed that expression of Cgtf6 was significantly reduced in CgTF1 null mutants. Whereas, deletion of Cgtf6 resulted in the transcriptional activation and consequent increase in the expression of ChA biosynthesis gene cluster and ChA production in C. globosum. These data suggested that CgTF6 probably acted as an end product feedback effector, and interacted with CgTF1 to maintain a tolerable concentration of ChA for cell survival.


2021 ◽  
Vol 8 (3) ◽  
pp. 169-175
Author(s):  
Wilma Delphine Silvia CR ◽  
Rashmi R N ◽  
Venkatesha

Zinc is a micromineral present in the body tissues and fluids. Zinc is absorbed from the duodenum and stored in the form of metallothionine in the liver and excreted through sweat. Zinc plays a vital role in protein biosynthesis, gene expression; it also acts as an antioxidant and is used in the growth of the fungus. Due to the deficiency of zinc, a patient will be suffering from poor wound healing, lesions of skin, impaired spermatogenesis, hyperkeratosis, dermatitis and alopecia.An unprecedented COVID-19 pandemic caused by a novel corona virus called SARS-CoV-2, produces severe acute respiratory distress syndrome (ARDS). Zinc is used to treat COVID 19 because it improves the immunity. As the COVID patients are susceptible to zinc deficiency, they are prescribed with zinc supplements. Intake of zinc more than1000mg/day causes Zinc toxicity. Fungus utilises zinc for its growth. Mucormycosis caused by fungus Rhizopus species seen in most of the post COVID patients. Since, Zinc has assumed importance in this COVID 19 pandemic, this review article unfathoms the explicit roles of Zinc in humans.


Author(s):  
Bin Wei ◽  
Ao‐Qi Du ◽  
Zhen‐Yi Zhou ◽  
Cong Lai ◽  
Wen‐Chao Yu ◽  
...  

2021 ◽  
Author(s):  
Peng Wang ◽  
Roxane Snijders ◽  
Wouter Kohlen ◽  
Jieyu Liu ◽  
Ton Bisseling ◽  
...  

Abstract To acquire sufficient mineral nutrients such as phosphate (Pi) from the soil, most plants engage in symbiosis with arbuscular mycorrhizal (AM) fungi. Attracted by plant-secreted strigolactones (SLs), the fungi colonize the roots and form highly branched hyphal structures called arbuscules inside inner cortex cells. The host plant must control the different steps of this interaction to maintain its symbiotic nature. However, how plants sense the amount of Pi obtained from the fungus, and how this determines the arbuscule lifespan, are far from understood. Here, we show that Medicago truncatula SPX-domain containing proteins SPX1 and SPX3 regulate root Pi starvation responses, in part by interacting with PHOSPHATE RESPONSE REGULATOR2, as well as fungal colonization and arbuscule degradation. SPX1 and SPX3 are induced upon Pi starvation but become more restricted to arbuscule-containing cells upon the establishment of symbiosis. This induction in arbuscule-containing cells is associated with the presence of cis-regulatory AW-boxes and transcriptional regulation by the WRINKLED1-like transcription factor WRI5a. Under Pi-limiting conditions, SPX1 and SPX3 facilitate the expression of the SL biosynthesis gene DWARF27, which could help explain the increased fungal branching in response to root exudates. Later, in arbuscule-containing cells, SPX1 and SPX3 redundantly control arbuscule degradation. Thus, SPX proteins play important roles as phosphate sensors to maintain a beneficial AM symbiosis.


Sign in / Sign up

Export Citation Format

Share Document