scholarly journals Extracting multistage screening rules from online dating activity data

2016 ◽  
Vol 113 (38) ◽  
pp. 10530-10535 ◽  
Author(s):  
Elizabeth Bruch ◽  
Fred Feinberg ◽  
Kee Yeun Lee

This paper presents a statistical framework for harnessing online activity data to better understand how people make decisions. Building on insights from cognitive science and decision theory, we develop a discrete choice model that allows for exploratory behavior and multiple stages of decision making, with different rules enacted at each stage. Critically, the approach can identify if and when people invoke noncompensatory screeners that eliminate large swaths of alternatives from detailed consideration. The model is estimated using deidentified activity data on 1.1 million browsing and writing decisions observed on an online dating site. We find that mate seekers enact screeners (“deal breakers”) that encode acceptability cutoffs. A nonparametric account of heterogeneity reveals that, even after controlling for a host of observable attributes, mate evaluation differs across decision stages as well as across identified groupings of men and women. Our statistical framework can be widely applied in analyzing large-scale data on multistage choices, which typify searches for “big ticket” items.

Author(s):  
Heinz Stockinger ◽  
Alexander F. Auch ◽  
Markus Göker ◽  
Jan Meier-Kolthoff ◽  
Alexandros Stamatakis

Phylogenetic data analysis represents an extremely compute-intensive area of Bioinformatics and thus requires high-performance technologies. Another compute- and memory-intensive problem is that of host-parasite co-phylogenetic analysis: given two phylogenetic trees, one for the hosts (e.g., mammals) and one for their respective parasites (e.g., lice) the question arises whether host and parasite trees are more similar to each other than expected by chance alone. CopyCat is an easy-to-use tool that allows biologists to conduct such co-phylogenetic studies within an elaborate statistical framework based on the highly optimized sequential and parallel AxParafit program. We have developed enhanced versions of these tools that efficiently exploit a Grid environment and therefore facilitate large-scale data analyses. Furthermore, we developed a freely accessible client tool that provides co-phylogenetic analysis capabilities. Since the computational bulk of the problem is embarrassingly parallel, it fits well to a computational Grid and reduces the response time of large scale analyses.


Author(s):  
Heinz Stockinger ◽  
Alexander Auch ◽  
Markus Goeker ◽  
Jan Meier-Kolthoff ◽  
Alexandros Stamatakis

Phylogenetic data analysis represents an extremely compute-intensive area of Bioinformatics and thus requires high-performance technologies. Another compute- and memory-intensive problem is that of host-parasite co-phylogenetic analysis: given two phylogenetic trees, one for the hosts (e.g., mammals) and one for their respective parasites (e.g., lice) the question arises whether host and parasite trees are more similar to each other than expected by chance alone. CopyCat is an easy-to-use tool that allows biologists to conduct such co-phylogenetic studies within an elaborate statistical framework based on the highly optimized sequential and parallel AxParafit program. We have developed enhanced versions of these tools that efficiently exploit a Grid environment and therefore facilitate large-scale data analyses. Furthermore, we developed a freely accessible client tool that provides co-phylogenetic analysis capabilities. Since the computational bulk of the problem is embarrassingly parallel, it fits well to a computational Grid and reduces the response time of large scale analyses.


2009 ◽  
Vol 28 (11) ◽  
pp. 2737-2740
Author(s):  
Xiao ZHANG ◽  
Shan WANG ◽  
Na LIAN

2016 ◽  
Author(s):  
John W. Williams ◽  
◽  
Simon Goring ◽  
Eric Grimm ◽  
Jason McLachlan

2008 ◽  
Vol 9 (10) ◽  
pp. 1373-1381 ◽  
Author(s):  
Ding-yin Xia ◽  
Fei Wu ◽  
Xu-qing Zhang ◽  
Yue-ting Zhuang

2021 ◽  
Vol 77 (2) ◽  
pp. 98-108
Author(s):  
R. M. Churchill ◽  
C. S. Chang ◽  
J. Choi ◽  
J. Wong ◽  
S. Klasky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document