scholarly journals X-ray structure of the MMTV-A nucleosome core

2016 ◽  
Vol 113 (5) ◽  
pp. 1214-1219 ◽  
Author(s):  
Timothy D. Frouws ◽  
Sylwia C. Duda ◽  
Timothy J. Richmond

The conformation of DNA bound in nucleosomes depends on the DNA sequence. Questions such as how nucleosomes are positioned and how they potentially bind sequence-dependent nuclear factors require near-atomic resolution structures of the nucleosome core containing different DNA sequences; despite this, only the DNA for two similar α-satellite sequences and a sequence (601) selected in vitro have been visualized bound in the nucleosome core. Here we report the 2.6-Å resolution X-ray structure of a nucleosome core particle containing the DNA sequence of nucleosome A of the 3′-LTR of the mouse mammary tumor virus (147 bp MMTV-A). To our knowledge, this is the first nucleosome core particle structure containing a promoter sequence and crystallized from Mg2+ ions. It reveals sequence-dependent DNA conformations not seen previously, including kinking into the DNA major groove.

2000 ◽  
Vol 28 (4) ◽  
pp. 373-376 ◽  
Author(s):  
R. Negri ◽  
M. Buttinelli ◽  
G. Panetta ◽  
V. De Arcangelis ◽  
E. Di Mauro ◽  
...  

Although the crystal structure of nucleosome core particle is essentially symmetrical in the vicinity of the dyad, the linker histone binds asymmetrically in this region to select a single high-affinity site from potentially two equivalent sites. To try to resolve this apparent paradox we mapped to base-pair resolution the dyads and rotational settings of nucleosome core particles reassembled on synthetic tandemly repeating 20 bp DNA sequences. In agreement with previous observations, we observed (1) that the helical repeat on each side of the dyad cluster is 10 bp maintaining register with the sequence repeat and (2) that this register changes by 2 bp in the vicinity of the dyad. The additional 2 bp required to effect the change in the rotational settings is accommodated by an adjustment immediately adjacent to the dyad. At the dyad the hydroxyl radical cleavage is asymmetric and we suggest that the inferred structural asymmetry could direct the binding of the linker histone to a single preferred site.


1984 ◽  
Vol 4 (1) ◽  
pp. 133-141
Author(s):  
J Brady ◽  
M Radonovich ◽  
M Thoren ◽  
G Das ◽  
N P Salzman

We have previously identified an 11-base DNA sequence, 5'-G-G-T-A-C-C-T-A-A-C-C-3' (simian virus 40 [SV40] map position 294 to 304), which is important in the control of SV40 late RNA expression in vitro and in vivo (Brady et al., Cell 31:625-633, 1982). We report here the identification of another domain of the SV40 late promoter. A series of mutants with deletions extending from SV40 map position 0 to 300 was prepared by nuclease BAL 31 treatment. The cloned templates were then analyzed for efficiency and accuracy of late SV40 RNA expression in the Manley in vitro transcription system. Our studies showed that, in addition to the promoter domain near map position 300, there are essential DNA sequences between nucleotide positions 74 and 95 that are required for efficient expression of late SV40 RNA. Included in this SV40 DNA sequence were two of the six GGGCGG SV40 repeat sequences and an 11-nucleotide segment which showed strong homology with the upstream sequences required for the efficient in vitro and in vivo expression of the histone H2A gene. This upstream promoter sequence supported transcription with the same efficiency even when it was moved 72 nucleotides closer to the major late cap site. In vitro promoter competition analysis demonstrated that the upstream promoter sequence, independent of the 294 to 304 promoter element, is capable of binding polymerase-transcription factors required for SV40 late gene transcription. Finally, we show that DNA sequences which control the specificity of RNA initiation at nucleotide 325 lie downstream of map position 294.


Biochemistry ◽  
2010 ◽  
Vol 49 (46) ◽  
pp. 9943-9945 ◽  
Author(s):  
Yuqin Cai ◽  
Lihua Wang ◽  
Shuang Ding ◽  
Adam Schwaid ◽  
Nicholas E. Geacintov ◽  
...  

2015 ◽  
Vol 108 (2) ◽  
pp. 541a
Author(s):  
Gautam Singh ◽  
Andrew V. Colasanti ◽  
Nicolas Clauvelin ◽  
Wilma K. Olson

2015 ◽  
Vol 29 (24) ◽  
pp. 2563-2575 ◽  
Author(s):  
Jia Fei ◽  
Sharon E. Torigoe ◽  
Christopher R. Brown ◽  
Mai T. Khuong ◽  
George A. Kassavetis ◽  
...  

Chromatin comprises nucleosomes as well as nonnucleosomal histone–DNA particles. Prenucleosomes are rapidly formed histone–DNA particles that can be converted into canonical nucleosomes by a motor protein such as ACF. Here we show that the prenucleosome is a stable conformational isomer of the nucleosome. It consists of a histone octamer associated with ∼80 base pair (bp) of DNA, which is located at a position that corresponds to the central 80 bp of a nucleosome core particle. Monomeric prenucleosomes with free flanking DNA do not spontaneously fold into nucleosomes but can be converted into canonical nucleosomes by an ATP-driven motor protein such as ACF or Chd1. In addition, histone H3K56, which is located at the DNA entry and exit points of a canonical nucleosome, is specifically acetylated by p300 in prenucleosomes relative to nucleosomes. Prenucleosomes assembled in vitro exhibit properties that are strikingly similar to those of nonnucleosomal histone–DNA particles in the upstream region of active promoters in vivo. These findings suggest that the prenucleosome, the only known stable conformational isomer of the nucleosome, is related to nonnucleosomal histone–DNA species in the cell.


2019 ◽  
Author(s):  
Hao Zhang ◽  
Tianhu Li

AbstractBesides those in 146-base pair nucleosome core particle DNA, supercoils have been known to be present in 10-base pair arm DNA segments and naked linker DNA segments. The interacting patterns among histone octamers, histone H1, 10-base pair arm DNA segments and linker DNA have, however, not yet been elucidated. In the current report, we examine correlations among constituents of nucleosomes from the mechanistic perspectives and present molecular pathways for elucidating supercoiling behaviors of their component DNA sequences. It is our hope that our new analyses could serve as incentives to further clarify correlations between histones and DNA in the dynamic structures of chromatins in the future.


Sign in / Sign up

Export Citation Format

Share Document