dna lesion
Recently Published Documents


TOTAL DOCUMENTS

299
(FIVE YEARS 76)

H-INDEX

40
(FIVE YEARS 4)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Ananya Chakravarti ◽  
Heshani N Thirimanne ◽  
Savanna Brown ◽  
Brian R Calvi

p53 gene family members in humans and other organisms encode a large number of protein isoforms whose functions are largely undefined. Using Drosophila as a model, we find that a p53B isoform is expressed predominantly in the germline where it colocalizes with p53A into subnuclear bodies. It is only p53A, however, that mediates the apoptotic response to ionizing radiation in the germline and soma. In contrast, p53A and p53B are both required for the normal repair of meiotic DNA breaks, an activity that is more crucial when meiotic recombination is defective. We find that in oocytes with persistent DNA breaks p53A is also required to activate a meiotic pachytene checkpoint. Our findings indicate that Drosophila p53 isoforms have DNA lesion and cell type-specific functions, with parallels to the functions of mammalian p53 family members in the genotoxic stress response and oocyte quality control.


2022 ◽  
Vol 5 (4) ◽  
pp. e202101134
Author(s):  
Ka Man Wong ◽  
Devin A King ◽  
Erin K Schwartz ◽  
Rafael E Herrera ◽  
Ashby J Morrison

Carcinogenic insult, such as UV light exposure, creates DNA lesions that evolve into mutations if left unrepaired. These resulting mutations can contribute to carcinogenesis and drive malignant phenotypes. Susceptibility to carcinogens (i.e., the propensity to form a carcinogen-induced DNA lesion) is regulated by both genetic and epigenetic factors. Importantly, carcinogen susceptibility is a critical contributor to cancer mutagenesis. It is known that mutations can be prevented by tumor suppressor regulation of DNA damage response pathways; however, their roles carcinogen susceptibility have not yet been reported. In this study, we reveal that the retinoblastoma (RB1) tumor suppressor regulates UV susceptibility across broad regions of the genome. In particular, centromere and telomere-proximal regions exhibit significant increases in UV lesion susceptibility when RB1 is deleted. Several cancer-related genes are located within genomic regions of increased susceptibility, including telomerase reverse transcriptase, TERT, thereby accelerating mutagenic potential in cancers with RB1 pathway alterations. These findings reveal novel genome stability mechanisms of a tumor suppressor and uncover new pathways to accumulate mutations during cancer evolution.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2810
Author(s):  
Irina Ielciu ◽  
Gabriela Adriana Filip ◽  
Ilioara Oniga ◽  
Neli-Kinga Olah ◽  
Ioana Bâldea ◽  
...  

The present study aimed to compare two polyphenolic-enriched extracts obtained from the Thymus marschallianus Willd. (Lamiaceae) species, harvested from culture (TMCE in doses of 0.66 μg GAE/mL and 0.066 μg GAE/mL) and from spontaneous flora (TMSE in doses of 0.94 μg GAE/mL and 0.094 μg GAE/mL) by assessing their biological effects on human umbilical vein endothelial cells (HUVECs) exposed to normoglycemic (137 mmol/L glucose) and hyperglycemic conditions (200 mmol/L glucose). Extracts were obtained by solid phase extraction (SPE) and analyzed by chromatographical (HPLC-DAD) and spectrophotometrical methods. Their effects on hyperglycemia were evaluated by the quantification of oxidative stress and NF-ĸB, pNF-ĸB, HIF-1α, and γ-H2AX expressions. The HPLC-DAD analysis highlighted significant amounts of rosmarinic acid (ranging between 0.18 and 1.81 mg/g dry extract), luteolin (ranging between 2.04 and 17.71 mg/g dry extract), kaempferol (ranging between 1.85 and 7.39 mg/g dry extract), and apigenin (ranging between 4.97 and 65.67 mg/g dry extract). Exposure to hyperglycemia induced oxidative stress and the activation of NF-ĸ increased the expression of HIF-1α and produced DNA lesions. The polyphenolic-enriched extracts proved a significant reduction of oxidative stress and γ-H2AX formation and improved the expression of HIF-1α, suggesting their protective role on endothelial cells in hyperglycemia. The tested extracts reduced the total NF-ĸB expression and diminished its activation in hyperglycemic conditions. The obtained results bring evidence for the use of the polyphenolic-enriched extracts of T. marschallianus as adjuvants in hyperglycemia.


2021 ◽  
Author(s):  
Gayan Senavirathne ◽  
Anne Gardner ◽  
James London ◽  
Ryan K. Messer ◽  
Yow-Yong Tan ◽  
...  

Integration into a host genome is essential for retrovirus infection and is catalyzed by a nucleoprotein complex (Intasome) containing the virus-encoded integrase (IN) and the reverse transcribed (RT) virus copy DNA (cDNA). Previous studies suggested that integration was limited by intasome-host DNA recognition progressions. Using single molecule Forster resonance energy transfer (smFRET) we show that PFV intasomes pause at nicked and gapped DNA, which targeted site-directed integration without inducing significant intasome conformational alterations. Base excision repair (BER) components that affect retroviral integration in vivo produce similar nick/gap intermediates during DNA lesion processing. Intasome pause dynamics was modified by the 5′-nick-gap chemistry, while an 8-oxo-guanine lesion, a mismatch, or a nucleotide insertion that induce backbone flexibility and/or static bends had no effect. These results suggest that dynamic often non-productive intasome-DNA interactions may be modulated to target retroviral integration.


2021 ◽  
Vol 22 (21) ◽  
pp. 11441
Author(s):  
Natalya V. Maluchenko ◽  
Alexey V. Feofanov ◽  
Vasily M. Studitsky

Poly (ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in processes of cell cycle regulation, DNA repair, transcription, and replication. Hyperactivity of PARP-1 induced by changes in cell homeostasis promotes development of chronic pathological processes leading to cell death during various metabolic disorders, cardiovascular and neurodegenerative diseases. In contrast, tumor growth is accompanied by a moderate activation of PARP-1 that supports survival of tumor cells due to enhancement of DNA lesion repair and resistance to therapy by DNA damaging agents. That is why PARP inhibitors (PARPi) are promising agents for the therapy of tumor and metabolic diseases. A PARPi family is rapidly growing partly due to natural polyphenols discovered among plant secondary metabolites. This review describes mechanisms of PARP-1 participation in the development of various pathologies, analyzes multiple PARP-dependent pathways of cell degeneration and death, and discusses representative plant polyphenols, which can inhibit PARP-1 directly or suppress unwanted PARP-dependent cellular processes.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1543
Author(s):  
Jun Che ◽  
Xin Hong ◽  
Hai Rao

DNA lesions escaping from repair often block the DNA replicative polymerases required for DNA replication and are handled during the S/G2 phases by the DNA damage tolerance (DDT) mechanisms, which include the error-prone translesion synthesis (TLS) and the error-free template switching (TS) pathways. Where the mono-ubiquitylation of PCNA K164 is critical for TLS, the poly-ubiquitylation of the same residue is obligatory for TS. However, it is not known how cells divide the labor between TLS and TS. Due to the fact that the type of DNA lesion significantly influences the TLS and TS choice, we propose that, instead of altering the ratio between the mono- and poly-Ub forms of PCNA, the competition between TLS and TS would automatically determine the selection between the two pathways. Future studies, especially the single integrated lesion “i-Damage” system, would elucidate detailed mechanisms governing the choices of specific DDT pathways.


2021 ◽  
Author(s):  
Yinzhu Hou ◽  
Tieliang Gan ◽  
Tiantian Fang ◽  
Yao Zhao ◽  
Qun Luo ◽  
...  

Pyridostatin (PDS) is a well-known G-quadruplex (G4) inducer and stabilizer, yet its target genes have remained unclear. Herein, combining mass spectrometry based proteomics strategy with bioinformatics analysis, we revealed that PDS significantly downregulated 22 proteins, of which the genes contain rich G4 potential sequences, in HeLa cancer cells, consequently upregulating 16 proteins remarkably. The PDS-regulated proteins appeared to work synergistically to activate cyclin and cell cycle regulation, and to restrain the inhibition of ARE-mediated mRNA decay pathway, suggesting that PDS itself is not a potential anticancer agent, at least towards HeLa cancer. Importantly, among the PDS targeted genes, SUB1, which expresses the human positive cofactor and DNA lesion sensor PC4, was down-regulated by 4.76-fold. Further studies demonstrated that the downregulation of PC4 dramatically promoted the cytotoxicity of trans-[PtCl2(NH3)(thiazole)] towards HeLa cells to a similar level to that of cisplatin, contributable to retarding the repair of 1,3-trans-platinated DNA lesion mediated by PC4. These findings not only provide new insights into better understanding on the biological functions of PDS, but also implicate a strategy for the rational design of novel multi-targeting platinum anticancer drugs via conjugation of PDS as a ligand to the coordination scaffold of transplatin for battling drug resistance to cisplatin.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5949
Author(s):  
Jingyuan Wu ◽  
Tuoyu Zhou ◽  
Yinxue Wang ◽  
Yanbiao Jiang ◽  
Yiqing Wang

Ovarian cancer ranks seventh in the most common malignant tumors among female disease, which seriously threatens female reproductive health. It is characterized by hidden pathogenesis, missed diagnosis, high reoccurrence rate, and poor prognosis. In clinic, the first-line treatment prioritized debulking surgery with paclitaxel-based chemotherapy. The harsh truth is that female patients are prone to relapse due to the dissemination of tumor cells and drug resistance. In these circumstances, the development of new therapy strategies combined with traditional approaches is conductive to improving the quality of treatment. Among numerous drug resources, botanical compounds have unique advantages due to their potentials in multitarget functions, long application history, and wide availability. Previous studies have revealed the therapeutic effects of bioactive plant components in ovarian cancer. These natural ingredients act as part of the initial treatment or an auxiliary option for maintenance therapy, further reducing the tumor and metastatic burden. In this review, we summarized the functions and mechanisms of natural botanical components applied in human ovarian cancer. We focused on the molecular mechanisms of cell apoptosis, autophagy, RNA and DNA lesion, ROS damage, and the multiple-drug resistance. We aim to provide a theoretical reference for in-depth drug research so as to manage ovarian cancer better in clinic.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anthony Sanchez ◽  
Doohyung Lee ◽  
Dae In Kim ◽  
Kyle M. Miller

DNA double-strand breaks (DSBs) are hazardous to genome integrity and can promote mutations and disease if not handled correctly. Cells respond to these dangers by engaging DNA damage response (DDR) pathways that are able to identify DNA breaks within chromatin leading ultimately to their repair. The recognition and repair of DSBs by the DDR is largely dependent on the ability of DNA damage sensing factors to bind to and interact with nucleic acids, nucleosomes and their modified forms to target these activities to the break site. These contacts orientate and localize factors to lesions within chromatin, allowing signaling and faithful repair of the break to occur. Coordinating these events requires the integration of several signaling and binding events. Studies are revealing an enormously complex array of interactions that contribute to DNA lesion recognition and repair including binding events on DNA, as well as RNA, RNA:DNA hybrids, nucleosomes, histone and non-histone protein post-translational modifications and protein-protein interactions. Here we examine several DDR pathways that highlight and provide prime examples of these emerging concepts. A combination of approaches including genetic, cellular, and structural biology have begun to reveal new insights into the molecular interactions that govern the DDR within chromatin. While many questions remain, a clearer picture has started to emerge for how DNA-templated processes including transcription, replication and DSB repair are coordinated. Multivalent interactions with several biomolecules serve as key signals to recruit and orientate proteins at DNA lesions, which is essential to integrate signaling events and coordinate the DDR within the milieu of the nucleus where competing genome functions take place. Genome architecture, chromatin structure and phase separation have emerged as additional vital regulatory mechanisms that also influence genome integrity pathways including DSB repair. Collectively, recent advancements in the field have not only provided a deeper understanding of these fundamental processes that maintain genome integrity and cellular homeostasis but have also started to identify new strategies to target deficiencies in these pathways that are prevalent in human diseases including cancer.


2021 ◽  
Author(s):  
Tao Jiang ◽  
Antonio MONARI ◽  
Elise Dumont ◽  
Emmanuelle Bignon

The 8-oxo-7,8-dihydroguanine, referred to as 8-oxoG, is a highly mutagenic DNA lesion that can provoke the appearance of mismatches if it escapes the DNA Damage Response. The specific recognition of its structural signature by the hOGG1 glycosylase is the first step along the Base Excision Repair pathway, that ensures the integrity of the genome by preventing the emergence of mutations. 8-oxoG formation, structural features and repair have been the matter of extensive research and more recently this active field of research expended to the more complicated case of 8-oxoG within clustered lesions. Indeed, the presence of a second lesion within 1 or 2 helix turns can dramatically impact the repair yields of 8-oxoG by glycosylases. In this work, we use mu-range molecular dynamics simulations and machine learning-based post-analysis to explore the molecular mechanisms associated with the recognition of 8-oxoG by hOGG1 when embedded in a multiple lesions site with a mismatch in 5' or 3'. We delineate the stiffening of the DNA-protein interactions upon the presence of the mismatches, and rationalize the much lower repair yields reported with a 5' mismatch by describing the perturbation of 8-oxoG structural features upon addition of an adjacent lesion.


Sign in / Sign up

Export Citation Format

Share Document