linker histone
Recently Published Documents


TOTAL DOCUMENTS

427
(FIVE YEARS 80)

H-INDEX

59
(FIVE YEARS 4)

Author(s):  
Shuting Lai ◽  
Jin Jia ◽  
Xiaoyu Cao ◽  
Ping-Kun Zhou ◽  
Shanshan Gao

Linker histone H1.2, which belongs to the linker histone family H1, plays a crucial role in the maintenance of the stable higher-order structures of chromatin and nucleosomes. As a critical part of chromatin structure, H1.2 has an important function in regulating chromatin dynamics and participates in multiple other cellular processes as well. Recent work has also shown that linker histone H1.2 regulates the transcription levels of certain target genes and affects different processes as well, such as cancer cell growth and migration, DNA duplication and DNA repair. The present work briefly summarizes the current knowledge of linker histone H1.2 modifications. Further, we also discuss the roles of linker histone H1.2 in the maintenance of genome stability, apoptosis, cell cycle regulation, and its association with disease.


2022 ◽  
Author(s):  
Pétur O. Heidarsson ◽  
Davide Mercadante ◽  
Andrea Sottini ◽  
Daniel Nettels ◽  
Madeleine B. Borgia ◽  
...  

2022 ◽  
Author(s):  
Rosevalentine Bosire ◽  
Lina Fadel ◽  
Gábor Mocsár ◽  
Péter Nánási ◽  
Pialy Sen ◽  
...  

Abstract Doxorubicin (Dox), a widely used anticancer DNA-binding drug, affects chromatin in multiple ways, and these effects contribute to both its efficacy and dose-limiting side-effects, especially cardiotoxicity. Here we studied the Dox effects on the chromatin binding of the architectural proteins high mobility group B1 (HMGB1) and the linker histone H1, and the transcription factor retinoic acid receptor (RARα) by fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS), in live cells. At lower drug concentrations, Dox increased the binding of HMGB1 to DNA while decreasing the binding of the linker histone H1. At higher doses that correspond to the peak plasma concentrations reached in chemotherapy, Dox reduced the binding of HMGB1 as well. This biphasic effect is interpreted in terms of a hierarchy of competition between the ligands involved and Dox-induced local conformational changes of nucleosome-free DNA. When combined, FRAP and FCS mobility data suggest that Dox decreases the overall binding of RARα to DNA, an effect that was only partially overcome by agonist binding. The intertwined interactions described likely contribute to the effects as well as side-effects of Dox.


2021 ◽  
Author(s):  
Shuang Li ◽  
Yan Shi ◽  
Yanna Dang ◽  
Bingjie Hu ◽  
Lieying Xiao ◽  
...  

Linker histone H1 binds to the nucleosome and is implicated in the regulation of the chromatin structure and function. The H1 variant H1FOO is heavily expressed in oocytes and early embryos. However, given the poor homology of H1FOO among mammals, the functional role of H1FOO during early embryonic development remains largely unknown, especially in domestic animals. Here, we find that H1FOO is not only expressed in oocytes and early embryos but granulosa cells and spermatids in cattle. We then demonstrate that the interference of H1FOO results in early embryonic developmental arrest in cattle using either RNA editing or Trim-Away approach. H1FOO depletion leads to compromised expression of critical lineage-specific genes at the morula stage and affects the establishment of cell polarity. Interestingly, H1FOO depletion causes a significant increase in expression genes encoding other linker H1 and core histones. Concurrently, there is an increase of H3K9me3 and H3K27me3, two markers of repressive chromatin and a decrease of H4K16ac, a marker of open chromatin. Importantly, overexpression of bovine H1FOO results in severe embryonic developmental defects. In sum, we propose that H1FOO controls the proper chromatin structure that is crucial for the fidelity of cell polarization and lineage specification during bovine early development.


2021 ◽  
Author(s):  
Daoud Sheban ◽  
Tom Shani ◽  
Roey Maor ◽  
Alejandro Aguilera-Castrejon ◽  
Nofar Mor ◽  
...  

Author(s):  
Roberto Amigo ◽  
Carlos Farkas ◽  
Cristian Gidi ◽  
Matias I. Hepp ◽  
Natalia Cartes ◽  
...  

2021 ◽  
Vol 71 ◽  
pp. 87-93
Author(s):  
Fanfan Hao ◽  
Seyit Kale ◽  
Stefan Dimitrov ◽  
Jeffrey J. Hayes
Keyword(s):  

2021 ◽  
Vol 22 (22) ◽  
pp. 12127
Author(s):  
Natalya V. Maluchenko ◽  
Dmitry K. Nilov ◽  
Sergey V. Pushkarev ◽  
Elena Y. Kotova ◽  
Nadezhda S. Gerasimova ◽  
...  

Poly(ADP-ribose) polymerase 1 (PARP1) is an enzyme involved in DNA repair, chromatin organization and transcription. During transcription initiation, PARP1 interacts with gene promoters where it binds to nucleosomes, replaces linker histone H1 and participates in gene regulation. However, the mechanisms of PARP1-nucleosome interaction remain unknown. Here, using spFRET microscopy, molecular dynamics and biochemical approaches we identified several different PARP1-nucleosome complexes and two types of PARP1 binding to mononucleosomes: at DNA ends and end-independent. Two or three molecules of PARP1 can bind to a nucleosome depending on the presence of linker DNA and can induce reorganization of the entire nucleosome that is independent of catalytic activity of PARP1. Nucleosome reorganization depends upon binding of PARP1 to nucleosomal DNA, likely near the binding site of linker histone H1. The data suggest that PARP1 can induce the formation of an alternative nucleosome state that is likely involved in gene regulation and DNA repair.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ruocen Liao ◽  
Xingyu Chen ◽  
Qianhua Cao ◽  
Yifan Wang ◽  
Zhaorui Miao ◽  
...  

BackgroundBasal-like breast cancer (BLBC) is associated with a poor clinical outcome; however, the mechanism of BLBC aggressiveness is still unclear. It has been shown that a linker histone functions as either a positive or negative regulator of gene expression in tumors. Here, we aimed to investigate the possible involvement and mechanism of HIST1H1B in BLBC progression.Experimental designWe analyzed multiple gene expression datasets to determine the relevance of HIST1H1B expression with BLBC. We employed quantitative real-time PCR, transwell assay, colony formation assay, and mammosphere assay to dissect the molecular events associated with the expression of HIST1H1B in human breast cancer. We studied the association of HIST1H1B with CSF2 by ChIP assay. Using tumorigenesis assays, we determine the effect of HIST1H1B expression on tumorigenicity of BLBC cells.ResultsHere, we show that the linker histone HIST1H1B is dramatically elevated in BLBC due to HIST1H1B copy number amplification and promoter hypomethylation. HIST1H1B upregulates colony-stimulating factor 2 (CSF2) expression by binding the CSF2 promoter. HIST1H1B expression promotes, whereas knockdown of HIST1H1B expression suppresses tumorigenicity. In breast cancer patients, HIST1H1B expression is positively correlated with large tumor size, high grade, metastasis and poor survival.ConclusionHIST1H1B contributes to basal-like breast cancer progression by modulating CSF2 expression, indicating a potential prognostic marker and therapeutic target for this disease.


Sign in / Sign up

Export Citation Format

Share Document