scholarly journals MinE conformational dynamics regulate membrane binding, MinD interaction, and Min oscillation

2017 ◽  
Vol 114 (29) ◽  
pp. 7497-7504 ◽  
Author(s):  
Kyung-Tae Park ◽  
Maria T. Villar ◽  
Antonio Artigues ◽  
Joe Lutkenhaus

InEscherichia coliMinE induces MinC/MinD to oscillate between the ends of the cell, contributing to the precise placement of the Z ring at midcell. To do this, MinE undergoes a remarkable conformational change from a latent 6β-stranded form that diffuses in the cytoplasm to an active 4β-stranded form bound to the membrane and MinD. How this conformational switch occurs is not known. Here, using hydrogen–deuterium exchange coupled to mass spectrometry (HDX-MS) we rule out a model in which the two forms are in rapid equilibrium. Furthermore, HDX-MS revealed that a MinE mutant (D45A/V49A), previously shown to produce an aberrant oscillation and unable to assemble a MinE ring, is more rigid than WT MinE. This mutant has a defect in interaction with MinD, suggesting it has difficulty in switching to the active form. Analysis of intragenic suppressors of this mutant suggests it has difficulty in releasing the N-terminal membrane targeting sequences (MTS). These results indicate that the dynamic association of the MTS with the β-sheet is fine-tuned to balance MinE’s need to sense MinD on the membrane with its need to diffuse in the cytoplasm, both of which are necessary for the oscillation. The results lead to models for MinE activation and MinE ring formation.

2019 ◽  
Vol 35 (17) ◽  
pp. 3171-3173 ◽  
Author(s):  
Andy M C Lau ◽  
Zainab Ahdash ◽  
Chloe Martens ◽  
Argyris Politis

Abstract Summary Hydrogen deuterium exchange-mass spectrometry (HDX-MS) has emerged as a powerful technique for interrogating the conformational dynamics of proteins and their complexes. Currently, analysis of HDX-MS data remains a laborious procedure, mainly due to the lack of streamlined software to process the large datasets. We present Deuteros which is a standalone software designed to be coupled with Waters DynamX HDX data analysis software, allowing the rapid analysis and visualization of data from differential HDX-MS. Availability and implementation Deuteros is open-source and can be downloaded from https://github.com/andymlau/Deuteros, under the Apache 2.0 license. Written in MATLAB and supported on both Windows and MacOS. Requires the MATLAB runtime library. According to the Wellcome Trust and UK research councils' Common Principles on Data Policy on data, software and materials management and sharing, all data supporting this study will be openly available from the software repository.


2018 ◽  
Author(s):  
Andy M. C. Lau ◽  
Zainab Ahdash ◽  
Chloe Martens ◽  
Argyris Politis

AbstractSummaryHydrogen deuterium exchange-mass spectrometry (HDX-MS) has emerged as a powerful technique for interrogating the conformational dynamics of proteins and their complexes. Currently, analysis of HDX-MS data remains a laborious procedure, mainly due to the lack of streamlined software to process the large datasets. We present Deuteros which is a standalone software designed to be coupled with Waters DynamX HDX data analysis software, allowing the rapid analysis and visualization of data from differential HDX-MS.AvailabilityDeuteros is open-source and can be downloaded from https://github.com/andymlau/Deuteros, under the Apache 2.0 license.Implementationwritten in MATLAB and supported on both Windows and MacOS. Requires the MATLAB runtime [email protected]


2020 ◽  
Author(s):  
Jochem H. Smit ◽  
Srinath Krishnamurthy ◽  
Bindu Y. Srinivasu ◽  
Spyridoula Karamanou ◽  
Anastassios Economou

AbstractHydrogen Deuterium Exchange Mass Spectrometry (HDX-MS) is a powerful technique to monitor the intrinsic and conformational dynamics of proteins. Most HDX-MS experiments compare protein states (e.g. apoprotein vs liganded) and provide detailed information on differential dynamics between them obtained from multiple overlapping peptides. However, differential dynamics are difficult to compare across protein derivatives, oligomeric assemblies, homologues and samples treated under different buffer and protease conditions. A main reason is that peptide-based D-uptake differences do not inform on absolute intrinsic dynamics at the level of single aminoacyl residues. Such information is offered by protection factors, i.e. the position of the local equilibrium between the D-exchange-competent ‘open’ state and the non-exchanging ‘closed’ state. We present PyHDX, a software tool to calculate protection factors and Gibbs free energies typically within minutes from HDX-MS-derived peptide lists. PyHDX provides intrinsic information on the thermodynamics of protein dynamics at single-residue level. An interactive web interface further streamlines the process of transforming peptide lists to either coloured linear sequence maps or 3D structures of Gibbs free energies/protection factors.AvailabilityPyHDX source code is released under the MIT license and can be accessed at the project’s GitHub page.


2019 ◽  
Author(s):  
R.T. Bradshaw ◽  
F. Marinelli ◽  
J.D. Faraldo-Gómez ◽  
L.R. Forrest

AbstractHydrogen-deuterium exchange combined with mass spectrometry (HDX-MS) is a widely applied biophysical technique that probes the structure and dynamics of biomolecules in native environments without the need for site-directed modifications or bio-orthogonal labels. The mechanistic interpretation of measured HDX data, however, is often qualitative and subjective, owing to a lack of quantitative methods to rigorously translate observed deuteration levels into atomistic structural information. To help address this problem, we have developed a methodology to generate structural ensembles that faithfully reproduce HDX-MS measurements. In this approach, an ensemble of protein conformations is first generated, typically using molecular dynamics simulations. A maximum-entropy bias is then applied post-hoc to the resulting ensemble, such that averaged peptide-deuteration levels, as predicted by an empirical model of a value called the protection factor, agree with target values within a given level of uncertainty. We evaluate this approach, referred to as HDX ensemble reweighting (HDXer), for artificial target data reflecting the two major conformational states of a binding protein. We demonstrate that the information provided by HDX-MS experiments, and by the model of exchange, are sufficient to recover correctly-weighted structural ensembles from simulations, even when the relevant conformations are observed rarely. Degrading the information content of the target data, e.g., by reducing sequence coverage or by averaging exchange levels over longer peptide segments, reduces the quantitative structural accuracy of the reweighted ensemble but still allows for useful, molecular-level insights into the distinctive structural features reflected by the target data. Finally, we describe a quantitative metric with which candidate structural ensembles can be ranked based on their correspondence with target data, or revealed to be inadequate. Thus, not only does HDXer facilitate a rigorous mechanistic interpretation of HDX-MS measurements, but it may also inform experimental design and further the development of empirical models of the HDX reaction.Statement of significanceHDX-MS experiments are a powerful approach for probing the conformational dynamics and mechanisms of proteins. However, the mechanistic implications of HDX-MS observations are frequently difficult to interpret, due to the limited spatial resolution of the technique as well as the lack of quantitative tools to translate measured data into structural information. To overcome these problems, we have developed a computational approach to construct structural ensembles that are maximally diverse while reproducing target experimental HDX-MS data within a given level of uncertainty. Using artificial test data, we demonstrate that the approach can correctly discern distinct structural ensembles reflected in the target data, and thereby facilitate statistically robust evaluations of competing mechanistic interpretations of HDX-MS experiments.


Toxins ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 462 ◽  
Author(s):  
Magdalena Kulma ◽  
Michał Dadlez ◽  
Katarzyna Kwiatkowska

Lysenin is a pore-forming toxin of the aerolysin family, which is derived from coelomic fluid of the earthworm Eisenia fetida. Upon binding to sphingomyelin (SM)-containing membranes, lysenin undergoes a series of structural changes promoting the conversion of water-soluble monomers into oligomers, leading to its insertion into the membrane and the formation of a lytic β-barrel pore. The soluble monomer and transmembrane pore structures were recently described, but the underlying structural details of oligomerization remain unclear. To investigate the molecular mechanisms controlling the conformational rearrangements accompanying pore formation, we compared the hydrogen–deuterium exchange pattern between lyseninWT and its mutant lyseninV88C/Y131C. This mutation arrests lysenin oligomers in the prepore state at the membrane surface and does not affect the structural dynamics of the water-soluble form of lysenin. In contrast, membrane-bound lyseninV88C/Y131C exhibited increased structural stabilization, especially within the twisted β-sheet of the N-terminal domain. We demonstrated that the structural stabilization of the lysenin prepore started at the site of lysenin’s initial interaction with the lipid membrane and was transmitted to the twisted β-sheet of the N-terminal domain, and that lyseninV88C/Y131C was arrested in this conformation. In lyseninWT, stabilization of these regions drove the conformational changes necessary for pore formation.


Sign in / Sign up

Export Citation Format

Share Document