exchange mass spectrometry
Recently Published Documents


TOTAL DOCUMENTS

676
(FIVE YEARS 217)

H-INDEX

51
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Adam M Zmyslowski ◽  
Michael C Baxa ◽  
Isabelle A Gagnon ◽  
Tobin C Sosnick

To import large metabolites across the outer membrane of Gram-negative bacteria, TonB dependent transporters (TBDTs) undergo significant conformational change. After substrate binding in BtuB, the E. coli vitamin B12 TBDT, TonB binds and couples BtuB to the inner membrane proton motive force that powers transport (1). But, the role of TonB in rearranging the plug domain to form a putative pore remains enigmatic. Some studies focus on force-mediated unfolding (2) while others propose force-independent pore formation (3) by TonB binding leading to breakage of a salt bridge termed the "Ionic Lock". Our hydrogen exchange/mass spectrometry measurements in E. coli outer membranes find that the region surrounding the Ionic Lock, far from the B12 site, is fully destabilized upon substrate binding. A comparison of the exchange between the B12 bound and the B12&TonB bound complexes indicates that B12 binding is sufficient to unfold the Ionic Lock region with the subsequent binding of a TonB fragment having much weaker effects. TonB binding accelerates exchange in the third substrate binding loop, but pore formation does not obviously occur in this or any region. This study provides a detailed structural and energetic description of the early stages of B12 passage that provides support both for and against current models of the transport process.


2022 ◽  
Vol 119 (2) ◽  
pp. e2102953118
Author(s):  
Varnavas D. Mouchlis ◽  
Daiki Hayashi ◽  
Alexis M. Vasquez ◽  
Jian Cao ◽  
J. Andrew McCammon ◽  
...  

Lipoprotein-associated phospholipase A2 (Lp-PLA2) associates with low- and high-density lipoproteins in human plasma and specifically hydrolyzes circulating oxidized phospholipids involved in oxidative stress. The association of this enzyme with the lipoprotein’s phospholipid monolayer to access its substrate is the most crucial first step in its catalytic cycle. The current study demonstrates unequivocally that a significant movement of a major helical peptide region occurs upon membrane binding, resulting in a large conformational change upon Lp-PLA2 binding to a phospholipid surface. This allosteric regulation of an enzyme’s activity by a large membrane-like interface inducing a conformational change in the catalytic site defines a unique dimension of allosterism. The mechanism by which this enzyme associates with phospholipid interfaces to select and extract a single phospholipid substrate molecule and carry out catalysis is key to understanding its physiological functioning. A lipidomics platform was employed to determine the precise substrate specificity of human recombinant Lp-PLA2 and mutants. This study uniquely elucidates the association mechanism of this enzyme with membranes and its resulting conformational change as well as the extraction and binding of specific oxidized and short acyl-chain phospholipid substrates. Deuterium exchange mass spectrometry coupled with molecular dynamics simulations was used to define the precise specificity of the subsite for the oxidized fatty acid at the sn-2 position of the phospholipid backbone. Despite the existence of several crystal structures of this enzyme cocrystallized with inhibitors, little was understood about Lp-PLA2‘s specificity toward oxidized phospholipids.


2021 ◽  
Author(s):  
Nikhil K. Tulsian ◽  
Palur V. Raghuvamsi ◽  
Xinlei Qian ◽  
Gu Yue ◽  
Bhuvaneshwari D/O Shunmuganathan ◽  
...  

AbstractPrevious studies on the structural relationship between human antibodies and SARS-CoV-2 have focused on generating static snapshots of antibody complexes with the Spike trimer. However, antibody-antigen interactions are dynamic, with significant binding-induced allosteric effects on conformations of antibody and its target antigen. In this study, we employ hydrogen-deuterium exchange mass spectrometry, in vitro assays, and molecular dynamics simulations to investigate the allosteric perturbations linked to binding events between a group of human antibodies with differential functional activities, and the Spike trimer from SARS-CoV-2. Our investigations have revealed key dynamic features that define weakly or moderately neutralizing antibodies versus those with strong neutralizing activity. These results provide mechanistic insights into the functional modes of human antibodies against COVID-19, and provide a rationale for effective antiviral strategies.TeaserDifferent neutralizing antibodies induce site-specific allosteric effects across SARS-CoV-2 Spike protein


2021 ◽  
Author(s):  
Neeleema Seetaloo ◽  
Monika Kish ◽  
Jonathan James Phillips

Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) experiments on protein structures can be performed at three levels: (1) by enzymatically digesting labelled proteins and analyzing the peptides (bottom-up), (2) by further fragmenting peptides following digestion (middle-down), and (3) by fragmenting the intact labelled protein (top-down), using soft gas-phase fragmentation methods, such as electron transfer dissociation (ETD). However, to the best of our knowledge, the software packages currently available for the analysis of HDX-MS data do not enable the peptide- and ETD-levels to be combined - they can only be analyzed separately. Thus, we developed HDfleX - a standalone application for the analysis of flexible high structural resolution of HDX-MS data, which allows data at any level of structural resolution (intact protein, peptide, fragment) to be merged. HDfleX features rapid experimental data fitting, robust statistical significance analyses and optional methods for theoretical intrinsic calculations and a novel empirical correction for comparison between solution conditions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Valeria Calvaresi ◽  
Line T. Truelsen ◽  
Sidsel B. Larsen ◽  
Nikolaj H. T. Petersen ◽  
Thomas Kirkegaard ◽  
...  

AbstractThe binding of the major stress-inducible human 70-kDa heat shock protein (Hsp70) to the anionic phospholipid bis-(monoacylglycero)-phosphate (BMP) in the lysosomal membrane is crucial for its impact on cellular pathology in lysosomal storage disorders. However, the conformational features of this protein-lipid complex remain unclear. Here, we apply hydrogen–deuterium exchange mass spectrometry (HDX-MS) to describe the dynamics of the full-length Hsp70 in the cytosol and its conformational changes upon translocation into lysosomes. Using wild-type and W90F mutant proteins, we also map and discriminate the interaction of Hsp70 with BMP and other lipid components of the lysosomal membrane. We identify the N-terminal of the nucleotide binding domain (residues 87–118) as the primary orchestrator of BMP interaction. We show that the conformation of this domain is significantly reorganized in the W90F mutant, explaining its inability to stabilize lysosomal membranes. Overall, our results reveal important new molecular details of the protective effect of Hsp70 in lysosomal storage diseases, which, in turn, could guide future drug development.


Sign in / Sign up

Export Citation Format

Share Document