membrane interactions
Recently Published Documents


TOTAL DOCUMENTS

1129
(FIVE YEARS 159)

H-INDEX

73
(FIVE YEARS 8)

2022 ◽  
Author(s):  
James Kelly ◽  
Jessica Swanson ◽  
Joseph Newman ◽  
Elisabetta Groppelli ◽  
Nicola Stonehouse ◽  
...  

Kobuviruses are an unusual and poorly characterised genus within the picornavirus family, and can cause gastrointestinal enteric disease in humans, livestock and pets. The human Kobuvirus, Aichi virus (AiV) can cause severe gastroenteritis and deaths in children below the age of five years, however this is a very rare occurrence. During the assembly of most picornaviruses (e.g. poliovirus, rhinovirus and foot-and-mouth disease virus), the capsid precursor protein VP0 is cleaved into VP4 and VP2. However, Kobuviruses retain an uncleaved VP0. From studies with other picornaviruses, it is known that VP4 performs the essential function of pore formation in membranes, which facilitates transfer of the viral genome across the endosomal membrane and into the cytoplasm for replication. Here, we employ genome exposure and membrane interaction assays to demonstrate that pH plays a critical role in AiV uncoating and membrane interactions. We demonstrate that incubation at low pH alters the exposure of hydrophobic residues within the capsid, enhances genome exposure and enhances permeabilisation of model membranes. Furthermore, using peptides we demonstrate that the N-terminus of VP0 mediates membrane pore formation in model membranes, indicating that this plays an analogous function to VP4. Importance: To initiate infection, viruses must enter a host cell and deliver their genome into the appropriate location. The picornavirus family of small non-enveloped RNA viruses includes significant human and animal pathogens and are also models to understand the process of cell entry. Most picornavirus capsids contain the internal protein VP4, generated from cleavage of a VP0 precursor. During entry, VP4 is released from the capsid. In enteroviruses this forms a membrane pore, which facilitates genome release into the cytoplasm. Due to high levels of sequence similarity, it is expected to play the same role for other picornaviruses. Some picornaviruses, such as Aichi virus, retain an intact VP0, and it is unknown how these viruses re-arrange their capsids and induce membrane permeability in the absence of VP4. Here we have used Aichi virus as a model VP0 virus to test for conservation of function between VP0 and VP4. This could enhance understanding of pore function and lead to development of novel therapeutic agents that block entry.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 878
Author(s):  
Sylvie Nonin-Lecomte ◽  
Laurence Fermon ◽  
Brice Felden ◽  
Marie-Laure Pinel-Marie

The authors wish to make the following corrections to their paper [...]


Author(s):  
Sabrina A. Camacho ◽  
Mirella B. Kobal ◽  
Lucas G. Moreira ◽  
Maria J. Bistaffa ◽  
Thamires C. Roque ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 912
Author(s):  
Bineet Sharma ◽  
Hossein Moghimianavval ◽  
Sung-Won Hwang ◽  
Allen P. Liu

In the pursuit of understanding life, model membranes made of phospholipids were envisaged decades ago as a platform for the bottom-up study of biological processes. Micron-sized lipid vesicles have gained great acceptance as their bilayer membrane resembles the natural cell membrane. Important biological events involving membranes, such as membrane protein insertion, membrane fusion, and intercellular communication, will be highlighted in this review with recent research updates. We will first review different lipid bilayer platforms used for incorporation of integral membrane proteins and challenges associated with their functional reconstitution. We next discuss different methods for reconstitution of membrane fusion and compare their fusion efficiency. Lastly, we will highlight the importance and challenges of intercellular communication between synthetic cells and synthetic cells-to-natural cells. We will summarize the review by highlighting the challenges and opportunities associated with studying membrane–membrane interactions and possible future research directions.


Langmuir ◽  
2021 ◽  
Author(s):  
Sara Anselmo ◽  
Giuseppe Sancataldo ◽  
Hanne Mørck Nielsen ◽  
Vito Foderà ◽  
Valeria Vetri

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6455
Author(s):  
Mateusz Rzycki ◽  
Sebastian Kraszewski ◽  
Marta Gładysiewicz-Kudrawiec

The widespread problem of resistance development in bacteria has become a critical issue for modern medicine. To limit that phenomenon, many compounds have been extensively studied. Among them were derivatives of available drugs, but also alternative novel detergents such as Gemini surfactants. Over the last decade, they have been massively synthesized and studied to obtain the most effective antimicrobial agents, as well as the most selective aids for nanoparticles drug delivery. Various protocols and distinct bacterial strains used in Minimal Inhibitory Concentration experimental studies prevented performance benchmarking of different surfactant classes over these last years. Motivated by this limitation, we designed a theoretical methodology implemented in custom fast screening software to assess the surfactant activity on model lipid membranes. Experimentally based QSAR (quantitative structure-activity relationship) prediction delivered a set of parameters underlying the Diptool software engine for high-throughput agent-membrane interactions analysis. We validated our software by comparing score energy profiles with Gibbs free energy from the Adaptive Biasing Force approach on octenidine and chlorhexidine, popular antimicrobials. Results from Diptool can reflect the molecule behavior in the lipid membrane and correctly predict free energy of translocation much faster than classic molecular dynamics. This opens a new venue for searching novel classes of detergents with sharp biologic activity.


ChemPlusChem ◽  
2021 ◽  
Author(s):  
Bethany Mapley ◽  
David Townsend ◽  
John Griffin ◽  
Lorna Ashton ◽  
David A. Middleton

Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 764
Author(s):  
Marina Pinheiro

Drug–membrane interactions immediately occur when drugs are administered, independently of the route of administration or the target location (i.e., intracellular or within the membrane)[...]


Sign in / Sign up

Export Citation Format

Share Document