scholarly journals Functional ultrasound imaging of deep visual cortex in awake nonhuman primates

2020 ◽  
Vol 117 (25) ◽  
pp. 14453-14463 ◽  
Author(s):  
Kévin Blaize ◽  
Fabrice Arcizet ◽  
Marc Gesnik ◽  
Harry Ahnine ◽  
Ulisse Ferrari ◽  
...  

Deep regions of the brain are not easily accessible to investigation at the mesoscale level in awake animals or humans. We have recently developed a functional ultrasound (fUS) technique that enables imaging hemodynamic responses to visual tasks. Using fUS imaging on two awake nonhuman primates performing a passive fixation task, we constructed retinotopic maps at depth in the visual cortex (V1, V2, and V3) in the calcarine and lunate sulci. The maps could be acquired in a single-hour session with relatively few presentations of the stimuli. The spatial resolution of the technology is illustrated by mapping patterns similar to ocular dominance (OD) columns within superficial and deep layers of the primary visual cortex. These acquisitions using fUS suggested that OD selectivity is mostly present in layer IV but with extensions into layers II/III and V. This imaging technology provides a new mesoscale approach to the mapping of brain activity at high spatiotemporal resolution in awake subjects within the whole depth of the cortex.

2019 ◽  
Author(s):  
Blaize Kévin ◽  
Gesnik Marc ◽  
Arcizet Fabrice ◽  
Ahnine Harry ◽  
Ferrari Ulisse ◽  
...  

SummaryDeep regions of the brain are not easily accessible to investigation at the mesoscale level in awake animals or humans. We have recently developed functional Ultrasound (fUS) imaging fUS imaging technique to uncover deep hemodynamic functional responses. Applying fUS imaging on two awake non-human primates performing a passive fixation task, we reconstructed their retinotopic maps down to the deep calcarine and lunate sulci on visual areas (V1, V2 and V3). These maps were acquired in a single hour session with very few stimuli presentation. The spatial resolution of the technology is illustrated by mapping of Ocular Dominance (OD) columns within superficial and deep layers of the primary visual cortex. These acquisitions showed that OD selectivity is mostly present in layer IV but with evidence also in layers II/III and V. The fUS imaging technology therefore provides a new mesoscale approach to map brain activities at high spatiotemporal resolution in awake subjects within the whole depth of the cortex.


2014 ◽  
Vol 26 (12) ◽  
pp. 2691-2700 ◽  
Author(s):  
Reza Rajimehr ◽  
Natalia Y. Bilenko ◽  
Wim Vanduffel ◽  
Roger B. H. Tootell

Retinotopic organization is a ubiquitous property of lower-tier visual cortical areas in human and nonhuman primates. In macaque visual cortex, the retinotopic maps extend to higher-order areas in the ventral visual pathway, including area TEO in the inferior temporal (IT) cortex. Distinct regions within IT cortex are also selective to specific object categories such as faces. Here we tested the topographic relationship between retinotopic maps and face-selective patches in macaque visual cortex using high-resolution fMRI and retinotopic face stimuli. Distinct subregions within face-selective patches showed either (1) a coarse retinotopic map of eccentricity and polar angle, (2) a retinotopic bias to a specific location of visual field, or (3) nonretinotopic selectivity. In general, regions along the lateral convexity of IT cortex showed more overlap between retinotopic maps and face selectivity, compared with regions within the STS. Thus, face patches in macaques can be subdivided into smaller patches with distinguishable retinotopic properties.


2012 ◽  
Vol 107 (12) ◽  
pp. 3509-3527 ◽  
Author(s):  
Dzmitry A. Kaliukhovich ◽  
Rufin Vogels

Repetition of a visual stimulus reduces the firing rate of macaque inferior temporal (IT) neurons. The neural mechanisms underlying this adaptation or repetition suppression are still unclear. In particular, we do not know how the IT circuit is affected by stimulus repetition. To address this, we measured local field potentials (LFPs) and multiunit spiking activity (MUA) simultaneously at 16 sites with a laminar electrode in IT while repeating visual images. Stimulus exposures and interstimulus intervals were each 500 ms. The rhesus monkeys were performing a passive fixation task during the recordings. Induced LFP power decreased with repetition for spectral frequencies above 60 Hz but increased with repetition for lower frequencies, the latter because of a delayed decrease in power when repeating a stimulus. LFP-LFP and MUA-LFP coherences decreased with repetition for frequencies above 60 Hz. This repetition suppression of the MUA-LFP coherence was not due to differences in firing rate since it was present when spike counts were equated for the adapter and repeated stimuli. For frequencies between 15 and 40 Hz, the effect of repetition on synchronization depended on the electrode depth: For the putative superficial layers synchronization was enhanced with repetition, while the LFPs of the putative deep layers decreased their synchrony across layers. The between-site, trial-to-trial covariations in MUA (“noise correlations”) decreased with repetition, but this might have reflected repetition suppression of the firing rate. This work demonstrates that short-term stimulus repetition affects the synchronized activity, in addition to response strength, in IT cortex.


1984 ◽  
Vol 52 (5) ◽  
pp. 941-960 ◽  
Author(s):  
L. Tong ◽  
R. E. Kalil ◽  
P. D. Spear

Previous experiments have found that neurons in the cat's lateral suprasylvian (LS) visual area of cortex show functional compensation following removal of visual cortical areas 17, 18, and 19 on the day of birth. Correspondingly, an enhanced retino-thalamic pathway to LS cortex develops in these cats. The present experiments investigated the critical periods for these changes. Unilateral lesions of areas 17, 18, and 19 were made in cats ranging in age from 1 day postnatal to 26 wk. When the cats were adult, single-cell recordings were made from LS cortex ipsilateral to the lesion. In addition, transneuronal autoradiographic methods were used to trace the retino-thalamic projections to LS cortex in many of the same animals. Following lesions in 18- and 26-wk-old cats, there is a marked reduction in direction-selective LS cortex cells and an increase in cells that respond best to stationary flashing stimuli. These results are similar to those following visual cortex lesions in adult cats. In contrast, the percentages of cells with these properties are normal following lesions made from 1 day to 12 wk of age. Thus the critical period for development of direction selectivity and greater responses to moving than to stationary flashing stimuli in LS cortex following a visual cortex lesion ends between 12 and 18 wk of age. Following lesions in 26-wk-old cats, there is a decrease in the percentage of cells that respond to the ipsilateral eye, which is similar to results following visual cortex lesions in adult cats. However, ocular dominance is normal following lesions made from 1 day to 18 wk of age. Thus the critical period for development of responses to the ipsilateral eye following a lesion ends between 18 and 26 wk of age. Following visual cortex lesions in 2-, 4-, or 8-wk-old cats, about 30% of the LS cortex cells display orientation selectivity to elongated slits of light. In contrast, few or no cells display this property in normal adult cats, cats with lesions made on the day of birth, or cats with lesions made at 12 wk of age or later. Thus an anomalous property develops for many LS cells, and the critical period for this property begins later (between 1 day and 2 wk) and ends earlier (between 8 and 12 wk) than those for other properties.(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 6 (4) ◽  
pp. 615-621 ◽  
Author(s):  
Geoffrey J. Goodhill ◽  
David J. Willshaw

The elastic net (Durbin and Willshaw 1987) can account for the development of both topography and ocular dominance in the mapping from the lateral geniculate nucleus to primary visual cortex (Goodhill and Willshaw 1990). Here it is further shown for this model that (1) the overall pattern of stripes produced is strongly influenced by the shape of the cortex: in particular, stripes with a global order similar to that seen biologically can be produced under appropriate conditions, and (2) the observed changes in stripe width associated with monocular deprivation are reproduced in the model.


1998 ◽  
Vol 31 ◽  
pp. S181
Author(s):  
Kazuhiko Nakadate ◽  
Kazuyuki Imamura ◽  
Masayuki Kobayashi ◽  
Peter A. Kaub ◽  
Yasuyoshi Watanabe

Sign in / Sign up

Export Citation Format

Share Document