face selectivity
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 21)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Seungdae Baek ◽  
Min Song ◽  
Jaeson Jang ◽  
Gwangsu Kim ◽  
Se-Bum Paik

AbstractFace-selective neurons are observed in the primate visual pathway and are considered as the basis of face detection in the brain. However, it has been debated as to whether this neuronal selectivity can arise innately or whether it requires training from visual experience. Here, using a hierarchical deep neural network model of the ventral visual stream, we suggest a mechanism in which face-selectivity arises in the complete absence of training. We found that units selective to faces emerge robustly in randomly initialized networks and that these units reproduce many characteristics observed in monkeys. This innate selectivity also enables the untrained network to perform face-detection tasks. Intriguingly, we observed that units selective to various non-face objects can also arise innately in untrained networks. Our results imply that the random feedforward connections in early, untrained deep neural networks may be sufficient for initializing primitive visual selectivity.


2021 ◽  
Author(s):  
Regan Fry ◽  
Xian Li ◽  
Travis Clark Evans ◽  
Michael Esterman ◽  
Jim Tanaka ◽  
...  

Autism traits are commonly used as exclusionary criteria in studies of developmental prosopagnosia (DP). We investigated whether autism traits result in qualitatively different face processing in 43 DPs with high vs. low autism quotient (AQ) scores and 27 controls. Compared to controls, behavioral face recognition deficits were similar between the high and low AQ DP groups aside from worse emotion recognition in the high AQ DPs. Both DP groups showed reduced face selectivity in task-based fMRI, although higher AQ DPs showed decreased face selectivity in the posterior superior temporal sulcus. Resting-state fMRI showed similar face network connectivity between DP groups. This suggests that face processing is similar between the DP groups, with additional emotion processing deficits in higher AQ DPs.


2021 ◽  
Author(s):  
Sabina Srokova ◽  
Paul F Hill ◽  
Michael D Rugg

Recent research suggests that episodic memory is associated with systematic differences in the localization of neural activity observed during memory encoding and retrieval. The retrieval-related anterior shift is a phenomenon whereby the retrieval of a stimulus event (e.g., a scene image) is associated with a peak neural response which is localized more anteriorly than the response elicited when the stimulus is experienced directly. Here, we examine whether the magnitude of the anterior shift, i.e., the distance between encoding- and retrieval-related response peaks, is moderated by age, and also whether the shift is associated with memory performance. Younger and older human subjects of both sexes underwent fMRI as they completed encoding and retrieval tasks on word-face and word-scene pairs. We localized peak scene- and face-selectivity for each individual participant within the face-selective precuneus (PCU) and in three scene-selective (parahippocampal place area [PPA], medial place area [MPA], occipital place area [OPA]) regions of interest (ROIs). In line with recent findings, we identified an anterior shift in PPA and OPA in both age groups and, in older adults only, in MPA and PCU also. Of importance, the magnitude of the anterior shift was larger in older than in younger adults. The shift within the PPA exhibited an age-invariant across-participant negative correlation with source memory performance, such that a smaller displacement between encoding- and retrieval-related neural activity was associated with better performance. These findings provide novel insights into the functional significance of the anterior shift, especially in relation to memory decline in older age.


Author(s):  
Simen Hagen ◽  
Aliette Lochy ◽  
Corentin Jacques ◽  
Louis Maillard ◽  
Sophie Colnat-Coulbois ◽  
...  

AbstractThe extent to which faces and written words share neural circuitry in the human brain is actively debated. Here, we compare face-selective and word-selective responses in a large group of patients (N = 37) implanted with intracerebral electrodes in the ventral occipito-temporal cortex (VOTC). Both face-selective (i.e., significantly different responses to faces vs. non-face visual objects) and word-selective (i.e., significantly different responses to words vs. pseudofonts) neural activity is isolated with frequency-tagging. Critically, this sensitive approach allows to objectively quantify category-selective neural responses and disentangle them from general visual responses. About 70% of significant electrode contacts show either face-selectivity or word-selectivity only, with the expected right and left hemispheric dominance, respectively. Spatial dissociations are also found within core regions of face and word processing, with a medio-lateral dissociation in the fusiform gyrus (FG) and surrounding sulci, respectively. In the 30% of overlapping face- and word-selective contacts across the VOTC or in the FG and surrounding sulci, between-category-selective amplitudes (faces vs. words) show no-to-weak correlations, despite strong correlations in both the within-category-selective amplitudes (face–face, word–word) and the general visual responses to words and faces. Overall, these observations support the view that category-selective circuitry for faces and written words is largely dissociated in the human adult VOTC.


Author(s):  
Narjes Soltani Dehaghani ◽  
◽  
Burkhard Maess ◽  
Reza Khosrowabadi ◽  
Mojtaba Zarei ◽  
...  

Faces can be speedily processed, although they convey an immense amount of information. Hence, in psychophysiological experiments, human faces constitute very special stimuli! Numerous studies have investigated the electrophysiological correlates of face processing, showing the existence of multiple event-related components. Nevertheless, dissimilarities in various levels of processing are still controversial. In this present study, we used magnetoencephalography (MEG) to examine how facial processing is different in perception and recognition from object processing and also determined 95% confidence interval for the onset and peak time of the effects we found. Our results confirm the face-selectivity for the M170 component, but not always for the M100 component. Additionally, we observed a unique speed pattern for the M170 component in perception and recognition both at the onset and the peak time.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 804
Author(s):  
Marcel Bauch ◽  
Werner Fudickar ◽  
Torsten Linker

Stereoselective reactions of singlet oxygen are of current interest. Since enantioselective photooxygenations have not been realized efficiently, auxiliary control is an attractive alternative. However, the obtained peroxides are often too labile for isolation or further transformations into enantiomerically pure products. Herein, we describe the oxidation of naphthalenes by singlet oxygen, where the face selectivity is controlled by carbohydrates for the first time. The synthesis of the precursors is easily achieved starting from naphthoquinone and a protected glucose derivative in only two steps. Photooxygenations proceed smoothly at low temperature, and we detected the corresponding endoperoxides as sole products by NMR. They are labile and can thermally react back to the parent naphthalenes and singlet oxygen. However, we could isolate and characterize two enantiomerically pure peroxides, which are sufficiently stable at room temperature. An interesting influence of substituents on the stereoselectivities of the photooxygenations has been found, ranging from 51:49 to up to 91:9 dr (diastereomeric ratio). We explain this by a hindered rotation of the carbohydrate substituents, substantiated by a combination of NOESY measurements and theoretical calculations. Finally, we could transfer the chiral information from a pure endoperoxide to an epoxide, which was isolated after cleavage of the sugar chiral auxiliary in enantiomerically pure form.


2021 ◽  
Vol 17 ◽  
Author(s):  
Austin Pounder ◽  
Angel Ho ◽  
Matthew Macleod ◽  
William Tam

: Oxabenzonorbornadiene (OBD) is a useful synthetic intermediate which can be readily activated by transition metal complexes with great face selectivity due to its dual-faced nature and intrinsic angle strain on the alkene. To date, the understanding of transition-metal catalyzed reactions of OBD itself has burgeoned; however, this has not been the case for unsymmetrical OBDs. Throughout the development of these reactions, the nature of C1-substituent has proven to have a profound effect on both the reactivity and selectivity of the outcome of the reaction. Upon substitution, different modes of reactivity arise, contributing to the possibility of multiple stereo-, regio-, and in extreme cases, constitutional isomers which can provide unique means of constructing a variety of synthetically useful cyclic frameworks. To maximize selectivity, an understanding of bridgehead substituent effects is crucial. To that end, this review outlines hitherto reported examples of bridgehead substituent effects on the chemistry of unsymmetrical C1-substituted OBDs.


Author(s):  
Houchao Xu ◽  
Carsten Schotte ◽  
Russell Cox ◽  
Jeroen Dickschat

The non-canonical fungal α-humulene synthase was investigated through isotopic labelling experiments for its stereochemical course regarding inversion or retention at C-1, the face selectivity at C-11, and the stereoselectivity of...


Sign in / Sign up

Export Citation Format

Share Document