scholarly journals Treatment of sickle cell anemia with 5-azacytidine results in increased fetal hemoglobin production and is associated with nonrandom hypomethylation of DNA around the gamma-delta-beta-globin gene complex.

1983 ◽  
Vol 80 (15) ◽  
pp. 4842-4846 ◽  
Author(s):  
S. Charache ◽  
G. Dover ◽  
K. Smith ◽  
C. C. Talbot ◽  
M. Moyer ◽  
...  
Blood ◽  
1996 ◽  
Vol 87 (4) ◽  
pp. 1604-1611 ◽  
Author(s):  
ZH Lu ◽  
MH Steinberg

Very different fetal hemoglobin levels among adult sickle cell anemia patients suggest genetic modulation of gamma-globin gene expression. In sickle cell anemia, different fetal hemoglobin levels are associated with distinct beta-globin gene haplotypes. Haplotype may be a marker for linked DNA that modulates gamma-globin gene expression. From 295 individuals with sickle cell anemia, we chose for detailed studies 53 patients who had the highest or the lowest fetal hemoglobin levels and 7 patients whose fetal hemoglobin levels were atypical of their haplotype. In these individuals, we examined portions of the beta- globin gene locus control region hypersensitive sites two and three, an (AT)x(T)y repeat 5′ to the beta-globin gene, a 4-bp deletion 5 to the A gamma T gene, promoters of both gamma-globin genes, 5′ flanking region of the G gamma-globin gene, and A gamma-globin gene IVS-II. Of the regions we studied all polymorphisms were always haplotype-linked and no additional mutations were present. This suggested that variations in these areas are uncommon mechanisms of fetal hemoglobin modulation in sickle cell anemia. Whereas unexamined cis-acting sequences may regulate gamma-globin gene transcription, trans-acting factors may play a more important role.


Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 787-792 ◽  
Author(s):  
J Elion ◽  
PE Berg ◽  
C Lapoumeroulie ◽  
G Trabuchet ◽  
M Mittelman ◽  
...  

The clinical diversity of sickle cell anemia is strongly related to the degree of intracellular hemoglobin S (Hb S) polymerization, which in turn is dependent on the intracellular concentration of Hb S. We have recently defined a region of DNA approximately 500 bp 5′ to the human beta-globin gene that acts as a silencer for the transcription of this gene and have shown that a polymorphism in this sequence is associated with a thalassemic phenotype of the beta-globin gene. In this work we have examined the correlation of DNA sequence polymorphisms in this silencer with binding of a previously identified putative repressor protein, BP1, and with the expression of Hb S in individuals heterozygous for the beta s allele. It was found that specific configurations of the motif, (AT)x(T)y, are homogeneous for the major haplotypes of the beta-globin gene cluster described on beta s chromosomes. Binding of BP1 was measured to DNA of three haplotypes: Indian, Benin, and Bantu. BP1 binds most tightly to DNA of the Indian haplotype, and these patients produce less beta s protein than Benin patients, whose DNA exhibits weaker affinity for BP1. Binding of BP1 is the weakest to DNA of the Bantu haplotype, which is associated with clinically more severe sickle cell symptoms. These data are consistent with the hypothesis that these polymorphisms may not be neutral and that the DNA sequence at this site may affect the expression of the beta s gene. Such an effect may be synergistic with other genetic variables, such as fetal hemoglobin levels, F-cell numbers, and the number of alpha-globin genes, in determining intracellular polymerization and, thus, the severity of the sickle cell syndromes.


Blood ◽  
1982 ◽  
Vol 59 (4) ◽  
pp. 828-831
Author(s):  
JF Balsley ◽  
E Rappaport ◽  
E Schwartz ◽  
S Surrey

We report restriction endonuclease analysis of the gamma-delta-beta- globin gene region in a mother and child heterozygous for G gamma-beta +-hereditary persistence of fetal hemoglobin (HPFH). The affected chromosome in these persons directs the production of G gamma-chains and beta-chains but not A gamma-chains. DNA was digested with several restriction enzymes and was examined for gamma, delta, beta sequences by blot hybridization. Only normal digestion fragments were present. By sensitive methods, we were unable to detect a deletion in the entire gamma-delta-beta-globin gene region of the affected chromosome, indicating that in this family, G gamma-beta +-HPFH is not due to a large deletion.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3171-3171
Author(s):  
Russell E. Ware ◽  
Barry Eggleston ◽  
Tatiana Abramova ◽  
Sherri A. Zimmerman ◽  
Alice Lail ◽  
...  

Abstract Fetal hemoglobin (HbF) is recognized as a major determinant of clinical disease severity in children and adults with sickle cell anemia (SCA). Patients with elevated HbF levels have a milder disease course, and many current therapeutic protocols for SCA include pharmacological induction of HbF. However, baseline and treatment HbF levels vary widely due to presumed genetic and environmental factors. Recognized globin gene modifiers of HbF include the beta globin haplotype and a potential contribution from concomitant alpha thalassemia. To characterize more fully the influence of globin gene modifiers on both baseline and treatment HbF levels, we retrospectively determined the beta globin haplotype (Benin, CAR, Senegal, Cameroon, or Arab-Indian) by selective gamma globin gene nucleotide sequencing and the alpha globin gene number (2, 3, or 4) by PCR for 67 African-American children with SCA receiving hydroxyurea therapy at stable maximal tolerated dose (MTD). The four beta globin haplotypes and frequencies identified in our cohort of children include Benin (0.61), CAR (0.17), Senegal (0.12), and Cameroon (0.10). The number of alpha globin genes and frequencies identified were 4 genes (0.72), 3 genes (0.25) and 2 genes (0.03). Baseline and MTD HbF levels were analyzed according to each variable. The average baseline HbF value for the entire cohort of children was 7.7 ± 4.4% (median 7.6%, range 1.3 – 19.3%), while the average treatment HbF value was 23.9 ± 7.2 % (median 22.9%, range 10.2 – 40.7%). All 67 children increased their HbF in response to hydroxyurea therapy (median 16.7%, range 5.0 – 28.8%). There was a modest but statistically significant correlation between the baseline and treatment HbF (r=0.66, p<.0001). The estimated effect of one unit change in baseline HbF on treatment HbF was 1.11 (95% CI of 0.78, 1.43). When baseline %HbF was analyzed according to the beta globin haplotype, the overall ANOVA had a p-value of 0.02, indicating a statistically significant influence. Further analysis confirmed associations previously identified in adults with SCA, i.e. children with at least one copy of the CAR haplotype had a lower baseline HbF (5.9% vs 8.4%, p=.05), while those with at least one copy of the Senegal haplotype had a higher baseline HbF (11.1% vs 6.7%, p<.001). When hydroxyurea MTD (treatment) HbF values were analyzed according to beta globin haplotype while adjusting for baseline HbF, however, the effect of beta globin haplotype was not statistically significant (p=.13). Analyses of HbF according to alpha globin gene number revealed no statistically significant effects on either baseline or treatment HbF values. Taken together, these data support the hypothesis that beta globin haplotype significant influences baseline HbF values for children with SCA, but has no significant effects on hydroxyurea MTD HbF values. Accordingly, children with SCA should be offered hydroxyurea based solely on clinical indications, without consideration of baseline HbF or beta globin haplotype. Even children with low baseline HbF values or the CAR beta globin haplotype can respond to hydroxyurea therapy with an elevated %HbF. Future studies designed to identify genetic modifiers of treatment HbF values should focus on sequence polymorphisms in non-globin genes that have trans-acting effects on gamma globin gene expression.


Blood ◽  
1986 ◽  
Vol 68 (4) ◽  
pp. 971-974
Author(s):  
GD Efremov ◽  
N Nikolov ◽  
Y Hattori ◽  
I Bakioglu ◽  
TH Huisman

Restriction endonuclease mapping analyses were made of DNA from a few members of a Macedonian family with hematological characteristics of delta beta-thalassemia, ie, microcytosis, normal HbA2 levels, and elevated levels of HbF (7% to 14%) with G gamma (average 40.5%) and A gamma T chains (average 59.5%). A large deletion of 18 to 23 kb was present with a 5′ breakpoint within a 670-bp segment of DNA between the HpaI and NcoI restriction sites 5′ to the delta globin gene, and a 3′ breakpoint between the BamHI and HpaI restriction sites located some 9 to 13 kb 3′ to the beta globin gene. This deletion is different from those present in other types of G gamma A gamma(delta beta)zero- thalassemia. The similarity of the hematological expression of these delta beta-thalassemic conditions which have somewhat comparable 5′ breakpoints supports the idea that an important fetal hemoglobin- controlling region lies between the psi beta and delta globin genes.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3374-3374
Author(s):  
Molly Susan Hein ◽  
Jennifer L Oliveira ◽  
Kenneth C Swanson ◽  
Patrick A Lundquist ◽  
Joella A Yungerberg ◽  
...  

Abstract Background: Large deletions involving the beta globin complex are relatively rare. They can be categorized generally into five groups by deletion size and/or location: 1) beta zero thalassemia (BZT); 2) delta beta thalassemia (DBT); 3) hereditary persistence of fetal hemoglobin (HPFH); 4) gamma delta beta thalassemia (GDBT); and 5) epsilon gamma delta beta thalassemia (EGDBT). These deletions are not well understood but often have significant clinical impact, either when present alone or in combination with other hemoglobin mutations. In this study, we analyze phenotypic and molecular data on a large number of cases with deletions in the beta globin gene complex to better classify these five groups of deletions as they occur in isolation. Methods: A query of the routine clinical testing patient files from the Mayo Clinic Metabolic Hematology and Molecular Genetics Laboratories from 2010 to 2015 identified 179 patients with a deletion confirmed by a Multiplex Ligation-dependent Probe Amplification (MLPA) assay. Twenty-four probes sets were placed from the 5' locus control region (LCR) to the 3' hypersensitivity region, spanning the beta globin gene complex. Using a Luminex LX200 flow cytometer, a gene dosage ratio was calculated for each probe set using the median fluorescent intensity value collected. The size and location of the deletion and patient phenotype were compared. Results: Of the 179 total cases, the following large deletions were identified: beta gene (HBB) (n = 47), delta (HBD) through HBB (n = 105), A-gamma (HBG2) through HBB (n = 20), and locus control region (LCR) through HBB (n = 7). One case had a deletion involving the LCR epsilon with the rest of the complex left intact. A subset (n = 60) of cases had compound hemoglobin mutations that altered the phenotype. The BZT cases had relatively high Hb A2 levels and variable Hb F levels consistent with promotor region loss. The main differences between DBT and HPFH included Hb F and Hb A2 levels. GDBT cases presented with median Hb F levels higher than that observed in DBTs, normal Hb A2, and microcytic anemia. EGDBT cases had variable features according to age of the patient and Hb F level; severe microcytic anemia was observed in neonates, milder microcytic anemia in young children, and microcytosis without anemia in an adult case. The phenotypic features of 119 patients with isolated large deletions are compiled in table 1. Conclusion: In general, all five categories of large deletions in an isolated heterozygous state can present with microcytic anemia and are typically benign with the exception of transient severe microcytic anemia in neonatal EGDBT cases. Although phenotypes associated with large deletions involving the beta globin gene complex are frequently distinctive, significant phenotypic overlap can be seen in a subset of cases. These cases require molecular analysis due to their clinical importance when in combination with another beta globin gene complex mutation for an adequate diagnosis and treatment approach. Table 1. Deletion type Age n HbF (%) HbA2 (%) Hb (g/dL) MCV (fL) RBC (10^12/L) RDW (%) MCH (pg/cell) BZT 20 6.3 (0.6-94.4) 6.8 (3.4-11.6) 11.1 (8.3-14.5) 65.4 (60.8-77.2) 5.4 (4.2-6.2) 19.2 (16.6-21.2) 20.9 (18.3-25.7) DBT 56 10.6 (2.7-22.4) 2.7 (2.5-3.1) 11.7 (8.6-14.4) 68.9 (61.3-83.5) 5.3 (4.1-7.3) 21.4 (18.2-26.8) 21.6 (19.9-39.2) HPFH 23 25.9 (17.6-39.7) 2.0 (1.5-2.4) 11.6 (8.1-16.7) 78.4 (60.2-101.9) 4.4 (3.0-6.3) 17.5 (14.1-22.3) 25.4 (17.6-29.7) GDBT 14 13.3 (8.2-19.0) 2.6 (1.8-2.7) 11.0 (8.6-14.1) 72.5 (57.9-82.1) 5.1 (3.5-6.2) 20.6 (17.4-23.5) 22 (17.9-25.1) EGDBT* 28 Y 1 0.3 3 13.3 59.4 6.9 15.4 19.2 1-4 Y 3 0.9 (0-1.6) 3.2 (2.9-3.5) 9.5 (8.8-13.3) 57.8 (57.6-59.4) 5.2 (4.9-6.9) 16.6 (15.4-17.4) 18.5 (18.1-19.2) <6 month 2 21.4 (14.8-27.9) 2.6 (2.2-2.9) 6.3 (6.0-6.6) 61.3 (59.9-62.6) 3.4 (3.3-3.3) 21.5 (21.2-21.7) 18.4 (18.1-18.7) medians, (min, max); *stratified by age Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1991 ◽  
Vol 77 (4) ◽  
pp. 861-867
Author(s):  
M Losekoot ◽  
R Fodde ◽  
EJ Gerritsen ◽  
I van de Kuit ◽  
A Schreuder ◽  
...  

We report two different disorders of the beta-globin gene cluster segregating in a Belgian family: a novel deletion that results in (G) gamma + ((A) gamma delta beta)(0)-thalassemia (thal) and a heterocellular hereditary persistence of foetal hemoglobin of the Swiss type linked to a delta(0)-thal gene (delta (0)-HPFH). Heterozygosity for the heterocellular HPFH brings about a moderate (3.4% to 8.24%) increase of hemoglobin (Hb) F having a G gamma/A gamma ratio of 4:1, whereas carriers of the G gamma + ((A) gamma delta beta)(0)-thal deletion show in their peripheral blood a considerably higher (15%) percentage of Hb F. Both defects interact in the compound heterozygotes for G gamma + ((A) gamma delta beta)(0)-thal and delta(0)-HPFH producing a further increase (up to 24%) of fetal Hb consisting entirely of G gamma chains. Molecular characterization of the (G) gamma + ((A) gamma delta beta)(0)-thal by means of Southern analysis showed that the deletion spans about 50 kb, removing the 3′ end of the A gamma- gene, the psi beta-, delta-, and beta-genes. A number of possible mechanisms leading to the overproduction of Hb F in HPFH and (G) gamma + ((A) gamma delta beta)(0)-thal will be discussed.


Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 787-792 ◽  
Author(s):  
J Elion ◽  
PE Berg ◽  
C Lapoumeroulie ◽  
G Trabuchet ◽  
M Mittelman ◽  
...  

Abstract The clinical diversity of sickle cell anemia is strongly related to the degree of intracellular hemoglobin S (Hb S) polymerization, which in turn is dependent on the intracellular concentration of Hb S. We have recently defined a region of DNA approximately 500 bp 5′ to the human beta-globin gene that acts as a silencer for the transcription of this gene and have shown that a polymorphism in this sequence is associated with a thalassemic phenotype of the beta-globin gene. In this work we have examined the correlation of DNA sequence polymorphisms in this silencer with binding of a previously identified putative repressor protein, BP1, and with the expression of Hb S in individuals heterozygous for the beta s allele. It was found that specific configurations of the motif, (AT)x(T)y, are homogeneous for the major haplotypes of the beta-globin gene cluster described on beta s chromosomes. Binding of BP1 was measured to DNA of three haplotypes: Indian, Benin, and Bantu. BP1 binds most tightly to DNA of the Indian haplotype, and these patients produce less beta s protein than Benin patients, whose DNA exhibits weaker affinity for BP1. Binding of BP1 is the weakest to DNA of the Bantu haplotype, which is associated with clinically more severe sickle cell symptoms. These data are consistent with the hypothesis that these polymorphisms may not be neutral and that the DNA sequence at this site may affect the expression of the beta s gene. Such an effect may be synergistic with other genetic variables, such as fetal hemoglobin levels, F-cell numbers, and the number of alpha-globin genes, in determining intracellular polymerization and, thus, the severity of the sickle cell syndromes.


Blood ◽  
1986 ◽  
Vol 68 (4) ◽  
pp. 971-974 ◽  
Author(s):  
GD Efremov ◽  
N Nikolov ◽  
Y Hattori ◽  
I Bakioglu ◽  
TH Huisman

Abstract Restriction endonuclease mapping analyses were made of DNA from a few members of a Macedonian family with hematological characteristics of delta beta-thalassemia, ie, microcytosis, normal HbA2 levels, and elevated levels of HbF (7% to 14%) with G gamma (average 40.5%) and A gamma T chains (average 59.5%). A large deletion of 18 to 23 kb was present with a 5′ breakpoint within a 670-bp segment of DNA between the HpaI and NcoI restriction sites 5′ to the delta globin gene, and a 3′ breakpoint between the BamHI and HpaI restriction sites located some 9 to 13 kb 3′ to the beta globin gene. This deletion is different from those present in other types of G gamma A gamma(delta beta)zero- thalassemia. The similarity of the hematological expression of these delta beta-thalassemic conditions which have somewhat comparable 5′ breakpoints supports the idea that an important fetal hemoglobin- controlling region lies between the psi beta and delta globin genes.


Sign in / Sign up

Export Citation Format

Share Document