scholarly journals Biochemical and Molecular analysis of the beta-globin gene on Saudi sickle cell anemia

2019 ◽  
Vol 26 (7) ◽  
pp. 1377-1384 ◽  
Author(s):  
Faris Q. Alenzi ◽  
Dalal S. AlShaya
Blood ◽  
1996 ◽  
Vol 87 (4) ◽  
pp. 1604-1611 ◽  
Author(s):  
ZH Lu ◽  
MH Steinberg

Very different fetal hemoglobin levels among adult sickle cell anemia patients suggest genetic modulation of gamma-globin gene expression. In sickle cell anemia, different fetal hemoglobin levels are associated with distinct beta-globin gene haplotypes. Haplotype may be a marker for linked DNA that modulates gamma-globin gene expression. From 295 individuals with sickle cell anemia, we chose for detailed studies 53 patients who had the highest or the lowest fetal hemoglobin levels and 7 patients whose fetal hemoglobin levels were atypical of their haplotype. In these individuals, we examined portions of the beta- globin gene locus control region hypersensitive sites two and three, an (AT)x(T)y repeat 5′ to the beta-globin gene, a 4-bp deletion 5 to the A gamma T gene, promoters of both gamma-globin genes, 5′ flanking region of the G gamma-globin gene, and A gamma-globin gene IVS-II. Of the regions we studied all polymorphisms were always haplotype-linked and no additional mutations were present. This suggested that variations in these areas are uncommon mechanisms of fetal hemoglobin modulation in sickle cell anemia. Whereas unexamined cis-acting sequences may regulate gamma-globin gene transcription, trans-acting factors may play a more important role.


Blood ◽  
1984 ◽  
Vol 64 (5) ◽  
pp. 1053-1058 ◽  
Author(s):  
SH Boyer ◽  
GJ Dover ◽  
GR Serjeant ◽  
KD Smith ◽  
SE Antonarakis ◽  
...  

Abstract Levels of fetal hemoglobin (HbF) bearing reticulocytes (F reticulocytes) range from 2% to 50% in patients with sickle cell (SS) anemia. To learn whether any portion of such variation in F cell production is regulated by loci genetically separable from the beta- globin gene cluster, percentages of F reticulocytes were compared in 59 sib pairs composed solely of SS members, including 40 pairs from Jamaica and 19 from the United States. We reasoned that differences in F reticulocyte levels might arise (1) from any of several kinds of artifact, (2) via half-sib status, or (3) because one or more genes regulating F cell production segregate separately from beta S. We minimized the role of artifact by assay of fresh samples from 84 SS individuals, including both members of 38 sib pairs. In 78 of the 84 subjects, serial values for percent F reticulocytes fell within 99.9% confidence limits or were alike by t test (P greater than or equal to .05). This left 32 sib pairs for which F reticulocyte levels in each member were reproducible. When sib-sib comparisons were limited to these 32 pairs, percentages of F reticulocytes were grossly dissimilar within 12 Jamaican and 3 American sibships. Within them, the probability that sibs were alike was always less than or equal to .005 and usually less than or equal to 10(-4). We next minimized the contribution of half-sibs among Jamaicans by a combination of paternity testing and sib-sib comparison of beta-globin region DNA restriction fragment length polymorphisms, especially among discordant pairs. We thereafter concluded that at least seven to eight Jamaican pairs were composed of reproducibly discordant full sibs. There is thus little doubt that there are genes regulating between-patient differences in F cell production that are separate from the beta-globin gene cluster. Still unanswered is (1) whether or not these genes are actually linked to beta S, (2) why F reticulocyte levels in Americans tend to be lower than in Jamaicans, and (3) whether or not differences in F cell production among SS patients are regulated by several major loci or by only one.


2010 ◽  
Vol 123 (3) ◽  
pp. 182-185 ◽  
Author(s):  
Abdul-Wahab M. Al-Saqladi ◽  
Bernard J. Brabin ◽  
Hassan A. Bin-Gadeem ◽  
Warsha A. Kanhai ◽  
Marion Phylipsen ◽  
...  

Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 787-792 ◽  
Author(s):  
J Elion ◽  
PE Berg ◽  
C Lapoumeroulie ◽  
G Trabuchet ◽  
M Mittelman ◽  
...  

The clinical diversity of sickle cell anemia is strongly related to the degree of intracellular hemoglobin S (Hb S) polymerization, which in turn is dependent on the intracellular concentration of Hb S. We have recently defined a region of DNA approximately 500 bp 5′ to the human beta-globin gene that acts as a silencer for the transcription of this gene and have shown that a polymorphism in this sequence is associated with a thalassemic phenotype of the beta-globin gene. In this work we have examined the correlation of DNA sequence polymorphisms in this silencer with binding of a previously identified putative repressor protein, BP1, and with the expression of Hb S in individuals heterozygous for the beta s allele. It was found that specific configurations of the motif, (AT)x(T)y, are homogeneous for the major haplotypes of the beta-globin gene cluster described on beta s chromosomes. Binding of BP1 was measured to DNA of three haplotypes: Indian, Benin, and Bantu. BP1 binds most tightly to DNA of the Indian haplotype, and these patients produce less beta s protein than Benin patients, whose DNA exhibits weaker affinity for BP1. Binding of BP1 is the weakest to DNA of the Bantu haplotype, which is associated with clinically more severe sickle cell symptoms. These data are consistent with the hypothesis that these polymorphisms may not be neutral and that the DNA sequence at this site may affect the expression of the beta s gene. Such an effect may be synergistic with other genetic variables, such as fetal hemoglobin levels, F-cell numbers, and the number of alpha-globin genes, in determining intracellular polymerization and, thus, the severity of the sickle cell syndromes.


1999 ◽  
Vol 5 (6) ◽  
pp. 1254-1258
Author(s):  
M. A. El Hazmi ◽  
A. S. Warsy ◽  
N. Bashir ◽  
A. Beshlawi ◽  
I. R. Hussain

Wecollaborated with researchers from Egypt, Syrian Arab Republic and Jordan in a study of patients with sickle-cell disease from those countries, and from various parts of Saudi Arabia, in order to investigate the influence of genetics on the clinical presentation of the disease, and to attempt to determine the origin of the sickle-cell gene in Arabs. Our results suggest that beta-globin gene haplotypes influence the clinical presentation of sickle-cell disease, and that there are at least two major foci for the origin of the sickle-cell gene, one in the eastern part of Saudi Arabia, and the other in the populations of North Africa and the north-western part of the Arabian peninsula


1985 ◽  
Vol 31 (7) ◽  
pp. 1203-1206 ◽  
Author(s):  
G J Garbutt ◽  
J T Wilson ◽  
G S Schuster ◽  
J J Leary ◽  
D C Ward

Abstract Earlier, we reported that the 5' end of the normal beta-globin gene (beta) resides on a 1.14-kilobase DNA fragment, whereas the 5' end of the sickle cell gene (beta s) resides on a 1.34-kilobase fragment. In that blot hybridization analysis, we used genomic DNA digested with restricted endonuclease Mst II, and radioactive probes with short half-life. We demonstrate here that, if a biotinylated probe is used instead in a slightly modified procedure, sickle cell anemia can be quickly and directly detected if there is as much as 5 micrograms of total genomic DNA in the sample. This procedure obviates the special precautions necessary when radioactive materials are used.


Sign in / Sign up

Export Citation Format

Share Document