scholarly journals Amphotericin B selection of mutant Chinese hamster cells with defects in the receptor-mediated endocytosis of low density lipoprotein and cholesterol biosynthesis.

1983 ◽  
Vol 80 (18) ◽  
pp. 5607-5611 ◽  
Author(s):  
M. Krieger ◽  
J. Martin ◽  
M. Segal ◽  
D. Kingsley
1986 ◽  
Vol 6 (9) ◽  
pp. 3268-3277
Author(s):  
R D Sege ◽  
K F Kozarsky ◽  
M Krieger

The ldlA locus is one of four Chinese hamster ovary (CHO) cell loci which are known to be required for the synthesis of functional low-density lipoprotein (LDL) receptors. Previous studies have suggested that the ldlA locus is diploid and encodes the LDL receptor. To confirm this assignment, we have isolated a partial genomic clone of the Chinese hamster LDL receptor gene and used this and other nucleic acid and antibody probes to study a family of ldlA mutants isolated after gamma-irradiation. Our analysis suggests that there are two LDL receptor alleles in wild-type CHO cells. Each of the three mutants isolated after gamma-irradiation had detectable deletions affecting one of the two LDL receptor alleles. One of the mutants also had a disruption of the remaining allele, resulting in the synthesis of an abnormal receptor precursor which was not subject to Golgi-associated posttranslational glycoprotein processing. The correlation of changes in the expression, structure, and function of LDL receptors with deletions in the LDL receptor genes in these mutants directly demonstrated that the ldlA locus in CHO cells is diploid and encodes the LDL receptor. In addition, our analysis suggests that CHO cells in culture may contain a partial LDL receptor pseudogene.


1989 ◽  
Vol 9 (11) ◽  
pp. 4799-4806
Author(s):  
P Reddy ◽  
M Krieger

ldlC cells are low-density lipoprotein (LDL) receptor-deficient Chinese hamster ovary cell mutants which express pleiotropic defects in Golgi-associated glycosylation reactions. The dramatically reduced stability of the abnormally glycosylated LDL receptors in ldlC cells was shown to be due, in part, to rapid proteolysis and release of a large extracellular fragment of the receptor into the medium. A set of spontaneously arising LDL receptor-positive revertants of ldlC cells has been isolated. One of these, RevC-13, exhibits the glycosylation defects characteristic of the original ldlC mutant, suggesting that restoration of receptor activity was due to extragenic suppression. This suppression was due to a dramatic increase in the rate of LDL receptor synthesis rather than to an increase in the stability of the abnormally glycosylated receptors. Increased receptor synthesis was not due to receptor gene amplification. The increased LDL receptor activity was subject to normal sterol regulation. Analysis of the RevC-13 extragenic suppressor activity in a series of hybrid cells showed that RevC-13 suppression was a codominant trait that acted in cis to the LDL receptor structural gene (ldlA). Thus, the extragenic suppression in RevC-13 cells has defined a genetic element which is either part of or linked to the LDL receptor structural gene and which can control LDL receptor expression.


1982 ◽  
Vol 2 (11) ◽  
pp. 1354-1361 ◽  
Author(s):  
A Masuda ◽  
S Akiyama ◽  
M Kuwano

A fungal metabolite, ML236B (Compactin), isolated from Penicillium citrinum, is a specific inhibitor of 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A reductase (EC 1.1.1.34). Three ML236B-resistant (ML236Br) mutants, MF-1, MF-2, and MF-3, were isolated from V79 after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The fluctuation test showed 2.2 X 10(-6) mutants per cell per generation of a spontaneous mutation frequency of ML236Br clones. These ML236Br clones showed a four- to fivefold-higher resistance to the drug than did their parental V79. Radioactive acetate, but not mevalonate, incorporation into the sterol fraction increased about 10-fold in ML236Br clones in comparison with that in V79. The cellular level of HMG-coenzyme A reductase in three ML236Br mutants was found to be a few-fold higher than that of V79 when cultured in the presence of lipoproteins. The 125I-labeled low-density lipoprotein-binding assay showed binding activity in three ML236Br clones comparable to that of the parental V79 cells. By contrast, an internalization assay of 125I-labeled low-density lipoprotein into the cells showed significantly reduced activity in three ML236Br clones in comparison with V79.


1986 ◽  
Vol 102 (5) ◽  
pp. 1567-1575 ◽  
Author(s):  
K F Kozarsky ◽  
H A Brush ◽  
M Krieger

The structure and processing of low density lipoprotein (LDL) receptors in wild-type and LDL receptor-deficient mutant Chinese hamster ovary cells was examined using polyclonal anti-receptor antibodies. As previously reported for human LDL receptors, the LDL receptors in wild-type Chinese hamster ovary cells were synthesized as precursors which were extensively processed by glycosylation to a mature form. In the course of normal receptor turnover, an apparently unglycosylated portion of the cysteine-rich N-terminal LDL binding domain of the receptor is proteolytically removed. The LDL receptor-deficient mutants fall into four complementation groups, ldlA, ldlB, ldlC, and ldlD; results of the analysis of ldlB, ldlC, and ldlD mutants are described in the accompanying paper (Kingsley, D. M., K. F. Kozarsky, M. Segal, and M. Krieger, 1986, J. Cell. Biol, 102:1576-1585). Analysis of ldlA cells has identified three classes of mutant alleles at the ldlA locus: null alleles, alleles that code for normally processed receptors that cannot bind LDL, and alleles that code for abnormally processed receptors. The abnormally processed receptors were continually converted to novel unstable intracellular intermediates. We also identified a compound-heterozygous mutant and a heterozygous revertant which indicate that the ldlA locus is diploid. In conjunction with other genetic and biochemical data, the finding of multiple mutant forms of the LDL receptor in ldlA mutants, some of which appeared together in the same cell, confirm that the ldlA locus is the structural gene for the LDL receptor.


Endocrinology ◽  
2007 ◽  
Vol 148 (8) ◽  
pp. 3722-3729 ◽  
Author(s):  
Faquan Liang ◽  
Ann M. Kapoun ◽  
Andrew Lam ◽  
Debby L. Damm ◽  
Diana Quan ◽  
...  

In this study, we demonstrate that B-type natriuretic peptide (BNP) opposed angiotensin II (Ang II)-stimulated de novo cholesterol biosynthesis, cellular cholesterol uptake, cholesterol transfer to the inner mitochondrial membrane, and steroidogenesis, which are required for biosynthesis of steroid hormones such as aldosterone and cortisol in primary human adrenocortical cells. BNP dose-dependently stimulated intracellular cGMP production with an EC50 of 11 nm, implying that human adrenocortical cells express the guanylyl cyclase A receptor. cDNA microarray and real-time RT-PCR analyses revealed that BNP inhibited Ang II-stimulated genes related to cholesterol biosynthesis (acetoacetyl coenzyme A thiolase, HMG coenzyme A synthase 1, HMG coenzyme A reductase, isopentenyl-diphosphate Δ-isomerase, lanosterol synthase, sterol-4C-methyl oxidase, and emopamil binding protein/sterol isomerase), cholesterol uptake from circulating lipoproteins (scavenger receptor class B type I and low-density lipoprotein receptor), cholesterol transfer to the inner mitochondrial membrane (steroidogenic acute regulatory protein), and steroidogenesis (ferredoxin 1,3β-hydroxysteroid dehydrogenase, glutathione transferase A3, CYP19A1, CYP11B1, and CYP11B2). Consistent with the microarray and real-time PCR results, BNP also blocked Ang II-induced binding of 125I-labeled low-density lipoprotein and 125I-labeled high-density lipoprotein to human adrenocortical cells. Furthermore, BNP markedly inhibited Ang II-stimulated release of estradiol, aldosterone, and cortisol from cultured primary human adrenocortical cells. These findings demonstrate that BNP opposes Ang II-induced steroidogenesis via multiple steps from cholesterol supply and transfer to the final formation of steroid hormones. This study provides new insights into the cellular mechanisms by which BNP modulates Ang II-induced steroidogenesis in the adrenal gland.


Sign in / Sign up

Export Citation Format

Share Document