lipoprotein receptor
Recently Published Documents


TOTAL DOCUMENTS

3093
(FIVE YEARS 285)

H-INDEX

127
(FIVE YEARS 8)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 120
Author(s):  
Abdulmajeed Fahad Alrefaei ◽  
Muhammad Abu-Elmagd

LRP6 is a member of the low-density lipoprotein receptor superfamily of cell-surface receptors. It is required for the activation of the Wnt/β-catenin signalling pathway. LRP6 is detected in different tissue types and is involved in numerous biological activities such as cell proliferation, specification, metastatic cancer, and embryonic development. LRP6 is essential for the proper development of different organs in vertebrates, such as Xenopus laevis, chickens, and mice. In human, LRP6 overexpression and mutations have been reported in multiple complex diseases including hypertension, atherosclerosis, and cancers. Clinical studies have shown that LRP6 is involved in various kinds of cancer, such as bladder and breast cancer. Therefore, in this review, we focus on the structure of LRP6 and its interactions with Wnt inhibitors (DKK1, SOST). We also discuss the expression of LRP6 in different model systems, with emphasis on its function in development and human diseases.


2022 ◽  
Vol 8 ◽  
Author(s):  
Chiara Macchi ◽  
Maria Francesca Greco ◽  
Chiara Favero ◽  
Laura Dioni ◽  
Laura Cantone ◽  
...  

Background: Extracellular vesicles (EV) concentration is generally increased in patients with cardiovascular diseases, although the protective role of EVs in atherosclerosis has been reported. Among the specific cargo of EVs, miRNAs contribute to different stages of atherosclerosis. Aim of the present report has been to investigate, in individuals with obesity, the interplay among EVs derived from cells relevant for the atherosclerotic process (i.e., platelets, endothelium, monocytes/macrophages, and neutrophils), their miRNA content and proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the main regulators of low-density lipoprotein receptor (LDLR).Methods and Results: EVs have been isolated from 936 individuals with obesity (body mass index = 33.6 ± 5.6 Kg/m2) and a raised cardiovascular risk (e.g., LDL-C = 131.6 ± 36.4 mg/dL, HOMA-IR = 3.1, and roughly 50% on anti-hypertensive medications). PCSK9 levels were negatively associated with EV count in the range 150–400 nm and with those derived from macrophages (CD14+), endothelium (CD105+), and neutrophils (CD66+). The association between PCSK9 and platelet-derived EVs (CD61+) was modified by platelet counts. PCSK9 was significantly associated with five EV-derived miRNAs (hsa-miRNA−362−5p,−150,−1244,−520b-3p,−638). Toll-like receptor 4 and estrogen receptor 1 were targeted by all five miRNAs and LDLR by four. The effect on LDLR expression is mainly driven by hsa-miR-150. Considering the implication of EV in atherosclerosis onset and progression, our findings show a potential role of PCSK9 to regulate EV-derived miRNAs, especially those involved in inflammation and expression of low-density lipoprotein receptor (LDLR) receptor.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6341
Author(s):  
Hiroshi Shimada ◽  
Takayuki Kohno ◽  
Takumi Konno ◽  
Tadahi Okada ◽  
Kimihito Saito ◽  
...  

Tight junction proteins play roles beyond permeability barriers functions and control cell proliferation and differentiation. The relation between tight junctions and the signal transduction pathways affects cell growth, invasion and migration. Abnormality of tight junction proteins closely contributes to epithelial mesenchymal transition (EMT) and malignancy of various cancers. Angulin-1/lipolysis-stimulated lipoprotein receptor (LSR) forms tricellular contacts that has a barrier function. Downregulation of angulin-1/LSR correlates with the malignancy in various cancers, including endometrioid-endometrial carcinoma (EEC). These alterations have been shown to link to not only multiple signaling pathways such as Hippo/YAP, HDAC, AMPK, but also cell metabolism in ECC cell line Sawano. Moreover, loss of angulin-1/LSR upregulates claudin-1, and loss of apoptosis stimulating p53 protein 2 (ASPP2) downregulates angulin-1/LSR. Angulin-1/LSR and ASPP2 concentrate at both midbody and centrosome in cytokinesis. In EEC tissues, angulin-1/LSR and ASPP2 are reduced and claudin-2 is overexpressed during malignancy, while in the tissues of endometriosis changes in localization of angulin-1/LSR and claudin-2 are seen. This review highlights how downregulation of angulin-1/LSR promotes development of endometriosis and EEC and discusses about the roles of angulin-1/LSR and its related proteins, including claudins and ASPP2.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fan Yin ◽  
Ping Lin ◽  
Wen-Qian Yu ◽  
Nuo Shen ◽  
Yuan Li ◽  
...  

Atherosclerotic cardiovascular disease has a high mortality worldwide. Our lab previously purified a polysaccharide designated as CM1 with (1→4)-β-D-Glcp and (1→2)-α-D-Manp glycosyls as the backbone. In this study, we investigated the anti-atherosclerosis effect of CM1 and the underlying mechanisms of action in a low-density lipoprotein receptor knockout (LDLR(-/-) mouse model. It was found that CM1 significantly decreased the formation of atherosclerotic plaques. Mechanistically, CM1 enhanced plasma level of apolipoprotein A-I and decreased the plasma levels of triglyceride, apolipoprotein B, and total cholesterol. In the absence of LDLR, CM1 elevated the expression of very low-density lipoprotein receptor for liver uptake of plasma apolipoprotein B-containing particles and reduced hepatic triglyceride synthesis by inhibiting sterol regulatory element binding protein 1c. CM1 improved lipids excretion by increasing the liver X receptor α/ATP-binding cassette G5 pathway in small intestine. CM1 reduced lipogenesis and lipolysis by inhibiting peroxisome proliferator-activated receptor γ and adipose triglyceride lipase in epididymal fat. Furthermore, CM1 improved lipid profile in C57BL/6J mice. Collectively, CM1 can modulate lipid metabolism by multiple pathways, contributing to reduced plasma lipid level and formation of atherosclerotic plaques in LDLR(−/−) mice. This molecule could be explored as a potential compound for prevention and treatment of hyperlipidemia and atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document