scholarly journals In vitro transcription of a silkworm 5S RNA gene requires an upstream signal.

1984 ◽  
Vol 81 (17) ◽  
pp. 5519-5522 ◽  
Author(s):  
D. G. Morton ◽  
K. U. Sprague
1987 ◽  
Vol 7 (6) ◽  
pp. 2046-2051 ◽  
Author(s):  
A D Garcia ◽  
A M O'Connell ◽  
S J Sharp

We constructed deletion-substitution and linker-scanning mutations in the 5'-flanking region of the Drosophila melanogaster 5S RNA gene. In vitro transcription of these templates in Drosophila and HeLa cell extracts revealed the presence of an essential control region (-30 region) located between nucleotides -39 and -26 upstream of the transcription initiation site: deletion of sequences upstream of nucleotide position -39 had no detectable effect on the wild-type level of in vitro transcription, whereas mutations extending between positions -39 and 1 resulted in templates with decreased transcriptional levels; specifically, deletion and linker-scanning mutations in the -34 to -26 region (-30 region) resulted in loss of transcription. The -30 region is essential for transcription and therefore forms part of the Drosophila 5S RNA gene transcription promoter. Compared with the activity of the wild-type gene, mutant 5S DNAs exhibited no impairment in the ability to sequester limiting transcription factors in a template exclusion competition assay. While we do not know which transcription factor(s) interacts with the -30 region, the possible involvement of RNA polymerase III at this region is discussed.


1987 ◽  
Vol 7 (10) ◽  
pp. 3503-3510 ◽  
Author(s):  
L J Peck ◽  
L Millstein ◽  
P Eversole-Cire ◽  
J M Gottesfeld ◽  
A Varshavsky

An extract from whole oocytes of Xenopus laevis was shown to transcribe somatic-type 5S RNA genes approximately 100-fold more efficiently than oocyte-type 5S RNA genes. This preference was at least 10-fold greater than the preference seen upon microinjection of 5S RNA genes into oocyte nuclei or upon in vitro transcription in an oocyte nuclear extract. The approximately 100-fold transcriptional bias in favor of the somatic-type 5S RNA genes observed in vitro in the whole oocyte extract was similar to the transcriptional bias observed in developing Xenopus embryos. We also showed that in the whole oocyte extract, a promoter-binding protein required for 5S RNA gene transcription, TFIIIA, was bound both to the actively transcribed somatic-type 5S RNA gene and to the largely inactive oocyte-type 5S RNA genes. These findings suggest that the mechanism for the differential expression of 5S RNA genes during Xenopus development does not involve differential binding of TFIIIA to 5S RNA genes.


1981 ◽  
Vol 90 (2) ◽  
pp. 323-331 ◽  
Author(s):  
B K Kay ◽  
O Schmidt ◽  
J G Gall

Recombinant plasmids that carried genes coding for 5S ribosomal RNA of the newt, Notophthalmus viridescens, were transcribed in vitro with extracts of Xenopus laevis oocyte nuclei. Plasmids containing multiple repeats of the 5S gene and spacer directed accurate transcription of 5S RNA (120 bases). Individual repeat units were recloned by inserting Sau 3A restriction fragments into the Bam HI site of plasmid pBR322. Because each repeat was cut by the enzyme within the coding region, the inserts had incomplete coding regions at their ends and spacer sequences in the middle. The DNA of these subclones directed synthesis of a 5S-size RNA that contained both plasmid and 5S RNA sequences. Transcription initiated in the vector, proceeded through the gene segment coding for nucleotides 41-120, and terminated at the end of the gene. The initiation of in vitro transcription required neither the original 5' flanking sequences of the spacer nor the first third of the gene. We conclude that intragenic DNA sequences control the initiation of transcription. Other subclones that include pseudogenes gave rise to some transcripts 156 nucleotides long. These long transcripts represented continuation of transcription through the 36-base-pair pseudogene that is located immediately downstream from the 5S gene. However, most transcripts of these subclones terminated at the end of the normal gene before the beginning of the pseudogene. It is probable that a run of four or more Ts serves as part of the termination signal.


1987 ◽  
Vol 7 (10) ◽  
pp. 3503-3510
Author(s):  
L J Peck ◽  
L Millstein ◽  
P Eversole-Cire ◽  
J M Gottesfeld ◽  
A Varshavsky

An extract from whole oocytes of Xenopus laevis was shown to transcribe somatic-type 5S RNA genes approximately 100-fold more efficiently than oocyte-type 5S RNA genes. This preference was at least 10-fold greater than the preference seen upon microinjection of 5S RNA genes into oocyte nuclei or upon in vitro transcription in an oocyte nuclear extract. The approximately 100-fold transcriptional bias in favor of the somatic-type 5S RNA genes observed in vitro in the whole oocyte extract was similar to the transcriptional bias observed in developing Xenopus embryos. We also showed that in the whole oocyte extract, a promoter-binding protein required for 5S RNA gene transcription, TFIIIA, was bound both to the actively transcribed somatic-type 5S RNA gene and to the largely inactive oocyte-type 5S RNA genes. These findings suggest that the mechanism for the differential expression of 5S RNA genes during Xenopus development does not involve differential binding of TFIIIA to 5S RNA genes.


1987 ◽  
Vol 7 (6) ◽  
pp. 2046-2051
Author(s):  
A D Garcia ◽  
A M O'Connell ◽  
S J Sharp

We constructed deletion-substitution and linker-scanning mutations in the 5'-flanking region of the Drosophila melanogaster 5S RNA gene. In vitro transcription of these templates in Drosophila and HeLa cell extracts revealed the presence of an essential control region (-30 region) located between nucleotides -39 and -26 upstream of the transcription initiation site: deletion of sequences upstream of nucleotide position -39 had no detectable effect on the wild-type level of in vitro transcription, whereas mutations extending between positions -39 and 1 resulted in templates with decreased transcriptional levels; specifically, deletion and linker-scanning mutations in the -34 to -26 region (-30 region) resulted in loss of transcription. The -30 region is essential for transcription and therefore forms part of the Drosophila 5S RNA gene transcription promoter. Compared with the activity of the wild-type gene, mutant 5S DNAs exhibited no impairment in the ability to sequester limiting transcription factors in a template exclusion competition assay. While we do not know which transcription factor(s) interacts with the -30 region, the possible involvement of RNA polymerase III at this region is discussed.


1982 ◽  
Vol 2 (12) ◽  
pp. 1524-1531 ◽  
Author(s):  
Diane G. Morton ◽  
Karen U. Sprague

A fragment ofBombyx morigenomic DNA containing one tRNA2Alagene and one 5S RNA gene has been used to compare the structural features of silkworm 5S RNA and tRNA genes. The nucleotide sequences of both genes and of the primary transcripts produced from them in homologous in vitro transcription systems have been determined. Comparison of the sequences of these two genes with that of another previously analyzedB. moritRNA2Alagene reveals common oligonucleotides which may be important transcriptional signals. The oligonucleotides TA(C)TAT, AATTTT, and TTC are located approximately (±1 nucleotide) 29, 19, and 3 nucleotides, respectively, before the transcription initiation sites of the two tRNA2Alagenes and the one 5S RNA gene we have analyzed. The sequence GGGCGTAG(C)TCAG lies within the coding regions of all three genes. The functional significance of these sequences is suggested by their location within regions required for the transcription of silkworm alanine tRNA genes in vitro.


1986 ◽  
Vol 205 (1) ◽  
pp. 189-192 ◽  
Author(s):  
Eric U. Selker ◽  
Ewa Morzycka-Wroblewska ◽  
Judith N. Stevens ◽  
Robert L. Metzenberg

1982 ◽  
Vol 2 (12) ◽  
pp. 1524-1531
Author(s):  
Diane G. Morton ◽  
Karen U. Sprague

A fragment of Bombyx mori genomic DNA containing one tRNA 2 Ala gene and one 5S RNA gene has been used to compare the structural features of silkworm 5S RNA and tRNA genes. The nucleotide sequences of both genes and of the primary transcripts produced from them in homologous in vitro transcription systems have been determined. Comparison of the sequences of these two genes with that of another previously analyzed B. mori tRNA 2 Ala gene reveals common oligonucleotides which may be important transcriptional signals. The oligonucleotides TA(C)TAT, AATTTT, and TTC are located approximately (±1 nucleotide) 29, 19, and 3 nucleotides, respectively, before the transcription initiation sites of the two tRNA 2 Ala genes and the one 5S RNA gene we have analyzed. The sequence GGGCGTAG(C)TCAG lies within the coding regions of all three genes. The functional significance of these sequences is suggested by their location within regions required for the transcription of silkworm alanine tRNA genes in vitro.


Biochemistry ◽  
1979 ◽  
Vol 18 (15) ◽  
pp. 3243-3248 ◽  
Author(s):  
Steven Ackerman ◽  
John J. Furth

Sign in / Sign up

Export Citation Format

Share Document