5s rna genes
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 0)

H-INDEX

26
(FIVE YEARS 0)

Genetics ◽  
1995 ◽  
Vol 140 (1) ◽  
pp. 325-343 ◽  
Author(s):  
E A Kellogg ◽  
R Appels

Abstract 5S RNAs form part of the ribosome in most organisms. In some, e.g., prokaryotes and some fungi, the genes are part of the ribosomal operon, but in most eukaryotes they are in tandem arrays of hundreds to thousands of copies separate from the main ribosomal array. 5S RNA genes can be aligned across kingdoms. We were therefore surprised to find that, for 28 diploid species of the wheat tribe (Triticeae), nucleotide diversity within an array is up to 6.2% in the genes, not significantly different from that of the nontranscribed spacers. Rates of concerted evolution must therefore be insufficient to homogenize the entire array. Between species, there are significantly fewer fixed differences in the gene than would be expected, given the high within-species variation. In contrast, the amount of variation between species in the spacer is the same as or greater than that within individuals. This leads to a paradox. High variation within an individual suggests that there is little selection on any particular gene within an array. But conservation of the gene across species implies that polymorphisms are periodically eliminated at a rate approximately equal to or greater than that of speciation. Levels of intraspecific polymorphism and interspecific divergence are thus decoupled. This implies that selective mechanisms exist to eliminate mutations in the gene without also affecting the spacer.


1994 ◽  
Vol 14 (7) ◽  
pp. 4704-4711 ◽  
Author(s):  
V J Wolf ◽  
T Dang ◽  
P Hartl ◽  
J M Gottesfeld

Transcription of 5S rRNA and tRNA genes by RNA polymerase III (pol III) in cytosolic extracts of unfertilized Xenopus eggs and in a reconstituted system derived from Xenopus oocytes is repressed by the action of one or more mitotic protein kinases. Repression is due to the phosphorylation of a component of the pol III transcription apparatus. We find that the maturation/mitosis-promoting factor kinase (MPF, p34cdc2-cyclin B) can directly mediate this repression in vitro. Affinity-purified MPF and immune complexes formed with antibodies to the protein subunits of MPF (p34cdc2 and cyclin B) retain both histone H1 kinase activity and the capacity to repress transcription in the reconstituted transcription system. Transcription complexes of oocyte-type 5S RNA genes and tRNA genes are quantitatively more sensitive to MPF repression than the corresponding transcription complexes of the somatic-type 5S RNA gene. The differential transcription of oocyte- and somatic-type genes observed during early Xenopus embryogenesis has been reproduced with the reconstituted transcription system and affinity-purified MPF. This differential transcription may be due to the instability of transcription complexes on the oocyte-type genes and the heightened sensitivity of soluble transcription factors to inactivation by mitotic phosphorylation. Our results suggest that MPF may play a role in vivo in the establishment of the embryonic pattern of pol III gene expression.


1994 ◽  
Vol 14 (7) ◽  
pp. 4704-4711
Author(s):  
V J Wolf ◽  
T Dang ◽  
P Hartl ◽  
J M Gottesfeld

Transcription of 5S rRNA and tRNA genes by RNA polymerase III (pol III) in cytosolic extracts of unfertilized Xenopus eggs and in a reconstituted system derived from Xenopus oocytes is repressed by the action of one or more mitotic protein kinases. Repression is due to the phosphorylation of a component of the pol III transcription apparatus. We find that the maturation/mitosis-promoting factor kinase (MPF, p34cdc2-cyclin B) can directly mediate this repression in vitro. Affinity-purified MPF and immune complexes formed with antibodies to the protein subunits of MPF (p34cdc2 and cyclin B) retain both histone H1 kinase activity and the capacity to repress transcription in the reconstituted transcription system. Transcription complexes of oocyte-type 5S RNA genes and tRNA genes are quantitatively more sensitive to MPF repression than the corresponding transcription complexes of the somatic-type 5S RNA gene. The differential transcription of oocyte- and somatic-type genes observed during early Xenopus embryogenesis has been reproduced with the reconstituted transcription system and affinity-purified MPF. This differential transcription may be due to the instability of transcription complexes on the oocyte-type genes and the heightened sensitivity of soluble transcription factors to inactivation by mitotic phosphorylation. Our results suggest that MPF may play a role in vivo in the establishment of the embryonic pattern of pol III gene expression.


1993 ◽  
Vol 13 (8) ◽  
pp. 4776-4783
Author(s):  
M B Rollins ◽  
S Del Rio ◽  
A L Galey ◽  
D R Setzer ◽  
M T Andrews

The Xenopus 5S RNA gene-specific transcription factor IIIA (TFIIIA) has nine consecutive Cys2His2 zinc finger motifs. Studies were conducted in vivo to determine the contribution of each of the nine zinc fingers to the activity of TFIIIA in living cells. Nine separate TFIIIA mutants were expressed in Xenopus embryos following microinjection of their respective in vitro-derived mRNAs. Each mutant contained a single histidine-to-asparagine substitution in the third zinc ligand position of an individual zinc finger. These mutations result in structural disruption of the mutated finger with little or no effect on the other fingers. The activity of mutant proteins in vivo was assessed by measuring transcriptional activation of the endogenous 5S RNA genes. Mutants containing a substitution in zinc finger 1, 2, or 3 activate 5S RNA genes at a level which is reduced relative to that in embryos injected with the message for wild-type TFIIIA. Proteins with a histidine-to-asparagine substitution in zinc finger 5 or 7 activate 5S RNA genes at a level that is roughly equivalent to that of the wild-type protein. Zinc fingers 8 and 9 appear to be critical for the normal function of TFIIIA, since mutations in these fingers result in little or no activation of the endogenous 5S RNA genes. Surprisingly, proteins with a mutation in zinc finger 4 or 6 stimulate 5S RNA transcription at a level that is significantly higher than that mediated by similar concentrations of wild-type TFIIIA. Differences in the amount of newly synthesized 5S RNA in embryos containing the various mutant forms of TFIIIA result from differences in the relative number and/or activity of transcription complexes assembled on the endogenous 5S RNA genes and, in the case of the finger 4 and finger 6 mutants, result from increased transcriptional activation of the normally inactive oocyte-type 5S RNA genes. The remarkably high activity of the finger 6 mutant can be reproduced in vitro when transcription is carried out in the presence of 5S RNA. Disruption of zinc finger 6 results in a form of TFIIIA that exhibits reduced susceptibility to feedback inhibition by 5S RNA and therefore increases the availability of the transcription factor for transcription complex formation.


1993 ◽  
Vol 13 (8) ◽  
pp. 4776-4783 ◽  
Author(s):  
M B Rollins ◽  
S Del Rio ◽  
A L Galey ◽  
D R Setzer ◽  
M T Andrews

The Xenopus 5S RNA gene-specific transcription factor IIIA (TFIIIA) has nine consecutive Cys2His2 zinc finger motifs. Studies were conducted in vivo to determine the contribution of each of the nine zinc fingers to the activity of TFIIIA in living cells. Nine separate TFIIIA mutants were expressed in Xenopus embryos following microinjection of their respective in vitro-derived mRNAs. Each mutant contained a single histidine-to-asparagine substitution in the third zinc ligand position of an individual zinc finger. These mutations result in structural disruption of the mutated finger with little or no effect on the other fingers. The activity of mutant proteins in vivo was assessed by measuring transcriptional activation of the endogenous 5S RNA genes. Mutants containing a substitution in zinc finger 1, 2, or 3 activate 5S RNA genes at a level which is reduced relative to that in embryos injected with the message for wild-type TFIIIA. Proteins with a histidine-to-asparagine substitution in zinc finger 5 or 7 activate 5S RNA genes at a level that is roughly equivalent to that of the wild-type protein. Zinc fingers 8 and 9 appear to be critical for the normal function of TFIIIA, since mutations in these fingers result in little or no activation of the endogenous 5S RNA genes. Surprisingly, proteins with a mutation in zinc finger 4 or 6 stimulate 5S RNA transcription at a level that is significantly higher than that mediated by similar concentrations of wild-type TFIIIA. Differences in the amount of newly synthesized 5S RNA in embryos containing the various mutant forms of TFIIIA result from differences in the relative number and/or activity of transcription complexes assembled on the endogenous 5S RNA genes and, in the case of the finger 4 and finger 6 mutants, result from increased transcriptional activation of the normally inactive oocyte-type 5S RNA genes. The remarkably high activity of the finger 6 mutant can be reproduced in vitro when transcription is carried out in the presence of 5S RNA. Disruption of zinc finger 6 results in a form of TFIIIA that exhibits reduced susceptibility to feedback inhibition by 5S RNA and therefore increases the availability of the transcription factor for transcription complex formation.


1992 ◽  
Vol 183 (3-4) ◽  
pp. 209-221 ◽  
Author(s):  
G. F. Moran ◽  
D. Smith ◽  
J. C. Bell ◽  
R. Appels
Keyword(s):  
5S Rna ◽  

1992 ◽  
Vol 12 (1) ◽  
pp. 45-55 ◽  
Author(s):  
C C Chipev ◽  
A P Wolffe

We describe the chromosomal organization of the major oocyte and somatic 5S RNA genes of Xenopus laevis in chromatin isolated from erythrocyte nuclei. Both major oocyte and somatic 5S DNA repeats are associated with nucleosomes; however, differences exist in the organization of chromatin over the oocyte and somatic 5S RNA genes. The repressed oocyte 5S RNA gene is protected from nuclease digestion by incorporation into a nucleosome, and the entire oocyte 5S DNA repeat is assembled into a loosely positioned array of nucleosomes. In contrast, the potentially active somatic 5S RNA gene is accessible to nuclease digestion, and the majority of somatic 5S RNA genes appear not to be incorporated into positioned nucleosomes. Evidence is presented supporting the stable association of transcription factors with the somatic 5S RNA genes. Histone H1 is shown to have a role both in determining the organization of nucleosomes over the oocyte 5S DNA repeat and in repressing transcription of the oocyte 5S RNA genes.


1992 ◽  
Vol 12 (1) ◽  
pp. 45-55
Author(s):  
C C Chipev ◽  
A P Wolffe

We describe the chromosomal organization of the major oocyte and somatic 5S RNA genes of Xenopus laevis in chromatin isolated from erythrocyte nuclei. Both major oocyte and somatic 5S DNA repeats are associated with nucleosomes; however, differences exist in the organization of chromatin over the oocyte and somatic 5S RNA genes. The repressed oocyte 5S RNA gene is protected from nuclease digestion by incorporation into a nucleosome, and the entire oocyte 5S DNA repeat is assembled into a loosely positioned array of nucleosomes. In contrast, the potentially active somatic 5S RNA gene is accessible to nuclease digestion, and the majority of somatic 5S RNA genes appear not to be incorporated into positioned nucleosomes. Evidence is presented supporting the stable association of transcription factors with the somatic 5S RNA genes. Histone H1 is shown to have a role both in determining the organization of nucleosomes over the oocyte 5S DNA repeat and in repressing transcription of the oocyte 5S RNA genes.


Sign in / Sign up

Export Citation Format

Share Document