xenopus laevis oocyte
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 4)

H-INDEX

31
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ruijing Tang ◽  
Shang Yang ◽  
Georg Nagel ◽  
Shiqiang Gao

Protein purification is the vital basis to study the function, structure and interaction of proteins. Widely used methods are affinity chromatography-based purifications, which require different chromatography columns and harsh conditions, such as acidic pH and/or adding imidazole or high salt concentration, to elute and collect the purified proteins. Here we established an easy and fast purification method for soluble proteins under mild conditions, based on the light-induced protein dimerization system iLID, which regulates protein binding and release with light. We utilize the biological membrane, which can be easily separated by centrifugation, as the port to anchor the target proteins. In Xenopus laevis oocyte and Escherichia coli, the blue light-sensitive part of iLID, AsLOV2-SsrA, was targeted to the plasma membrane by different membrane anchors. The other part of iLID, SspB, was fused with the protein of interest (POI) and expressed in the cytosol. The SspB-POI can be captured to the membrane fraction through light-induced binding to AsLOV2-SsrA and then released purely to fresh buffer in the dark after simple centrifugation and washing. This method, named mem-iLID, is very flexible in scale and economic. We demonstrate the quickly obtained yield of two pure and fully functional enzymes: a DNA polymerase and a light-activated adenylyl cyclase. Furthermore, we also designed a new SspB mutant for better dissociation and less interference with the protein of interest, which could potentially facilitate other optogenetic manipulations of protein-protein interaction.


Author(s):  
Ryuta Jomura ◽  
Yu Tanno ◽  
Shin-ichi Akanuma ◽  
Yoshiyuki Kubo ◽  
Masanori Tachikawa ◽  
...  

Creatine (Cr)/phosphocreatine has the ability to buffer the high-energy phosphate, thereby contributing to intracellular energy homeostasis. As Cr biosynthetic enzyme deficiency is reported to increase susceptibility to colitis under conditions of inflammatory stress, Cr is critical for maintaining intestinal homeostasis under inflammatory stress. Cr is mainly produced in the hepatocytes and then distributed to other organs of the body by the circulatory system. Since monocarboxylate transporter 9 (MCT9) and MCT12 have been reported to accept Cr as a substrate, these transporters are proposed as candidates for Cr efflux transporter in the liver. The aim of this study was to elucidate the transport mechanism on Cr supply from the hepatocytes. Immunohistochemical staining of the rat liver sections revealed that both MCT9 and MCT12 were localized on the sinusoidal membrane of the hepatocytes. In the transport studies using Xenopus laevis oocyte expression system, [14C]Cr efflux from MCT9- or MCT12-expressing oocytes was significantly greater than that from water-injected oocytes. [14C]Cr efflux from primary cultured hepatocytes was significantly decreased following MCT12 mRNA knockdown, whereas this efflux was not decreased after mRNA knockdown of MCT9. Based on the extent of MCT12 protein downregulation and Cr efflux after knockdown of MCT12 in primary cultured rat hepatocytes, the contribution ratio of MCT12 in Cr efflux was calculated as 76.4%. Our study suggests that MCT12 substantially contributes to the efflux of Cr at the sinusoidal membrane of the hepatocytes.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 484
Author(s):  
Dongchen An ◽  
Steve Peigneur ◽  
Jan Tytgat

The coupling of cannabinoid receptors, CB1 and CB2, to G protein-coupled inward rectifier potassium channels, GIRK1 and GIRK2, modulates neuronal excitability in the human brain. The present study established and validated the functional expression in a Xenopus laevis oocyte expression system of CB1 and CB2 receptors, interacting with heteromeric GIRK1/2 channels and a regulator of G protein signaling, RGS4. This ex vivo system enables the discovery of a wide range of ligands interacting orthosterically or allosterically with CB1 and/or CB2 receptors. WIN55,212-2, a non-selective agonist of CB1 and CB2, was used to explore the CB1- or CB2-GIRK1/2-RGS4 signaling cascade. We show that WIN55,212-2 activates CB1 and CB2 at low concentrations whereas at higher concentrations it exerts a direct block of GIRK1/2. This illustrates a dual modulatory function, a feature not described before, which helps to explain the adverse effects induced by WIN55,212-2 in vivo. When comparing the effects with other typical cannabinoids such as Δ9-THC, CBD, CP55,940, and rimonabant, only WIN55,212-2 can significantly block GIRK1/2. Interestingly, the inward rectifier potassium channel, IRK1, a non-G protein-coupled potassium channel important for setting the resting membrane voltage and highly similar to GIRK1 and GIRK2, is not sensitive to WIN55,212-2, Δ9-THC, CBD, CP55,940, or rimonabant. From this, it is concluded that WIN55,212-2 selectively blocks GIRK1/2.


2019 ◽  
Vol 317 (1) ◽  
pp. C20-C30 ◽  
Author(s):  
Andrée-Anne Marcoux ◽  
Samira Slimani ◽  
Laurence E. Tremblay ◽  
Rachelle Frenette-Cotton ◽  
Alexandre P. Garneau ◽  
...  

Na+-K+-Cl− cotransporter type 2 (NKCC2) is confined to the apical membrane of the thick ascending limb of Henle, where it reabsorbs a substantial fraction of the ultrafiltered NaCl load. It is expressed along this nephron segment as three main splice variants (called NKCC2A, NKCC2B, and NKCC2F) that differ in residue composition along their second transmembrane domain and first intracellular cytosolic connecting segment (CS2). NKCC2 is known to be activated by cell shrinkage and intracellular [Cl−] reduction. Although the with no lysine (WNK) kinases could play a role in this response, the mechanisms involved are ill defined, and the possibility of variant-specific responses has not been tested thus far. In this study, we have used the Xenopus laevis oocyte expression system to gain further insight in these regards. We have found for the first time that cell shrinkage could stimulate NKCC2A- and NKCC2B-mediated ion transport by increasing carrier abundance at the cell surface and that this response was achieved (at least in part) by the enzymatic function of a WNK kinase. Interestingly, we have also found that the activity and cell surface abundance of NKCC2F were less affected by cell shrinkage compared with the other variants and that ion transport by certain variants could be stimulated through WNK kinase expression in the absence of carrier redistribution. Taken together, these results suggest that the WNK kinase-dependent pathway can affect both the trafficking as well as intrinsic activity of NKCC2 and that CS2 plays an important role in carrier regulation.


Plants ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 61 ◽  
Author(s):  
Izumi Mori ◽  
Yuichi Nobukiyo ◽  
Yoshiki Nakahara ◽  
Mineo Shibasaka ◽  
Takuya Furuichi ◽  
...  

Cyclic nucleotide-gated channels (CNGCs) have been postulated to contribute significantly in plant development and stress resistance. However, their electrophysiological properties remain poorly understood. Here, we characterized barley CNGC2-3 (HvCNGC2-3) by the two-electrode voltage-clamp technique in the Xenopus laevis oocyte heterologous expression system. Current was not observed in X. laevis oocytes injected with HvCNGC2-3 complementary RNA (cRNA) in a bathing solution containing either Na+ or K+ solely, even in the presence of 8-bromoadenosine 3′,5′-cyclic monophosphate (8Br-cAMP) or 8-bromoguanosine 3′,5′-cyclic monophosphate (8Br-cGMP). A weakly voltage-dependent slow hyperpolarization-activated ion current was observed in the co-presence of Na+ and K+ in the bathing solution and in the presence of 10 µM 8Br-cAMP, but not 8Br-cGMP. Permeability ratios of HvCNGC2-3 to K+, Na+ and Cl− were determined as 1:0.63:0.03 according to reversal-potential analyses. Amino-acid replacement of the unique ion-selective motif of HvCNGC2-3, AQGL, with the canonical motif, GQGL, resulted in the abolition of the current. This study reports a unique two-ion-dependent activation characteristic of the barley CNGC, HvCNGC2-3.


2018 ◽  
Vol 341 (4) ◽  
pp. 219-227 ◽  
Author(s):  
Rosa Carotenuto ◽  
Margherita Tussellino

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Lilia Leisle ◽  
Rahul Chadda ◽  
John D Lueck ◽  
Daniel T Infield ◽  
Jason D Galpin ◽  
...  

A general method is described for the site-specific genetic encoding of cyanine dyes as non-canonical amino acids (Cy-ncAAs) into proteins. The approach relies on an improved technique for nonsense suppression with in vitro misacylated orthogonal tRNA. The data show that Cy-ncAAs (based on Cy3 and Cy5) are tolerated by the eukaryotic ribosome in cell-free and whole-cell environments and can be incorporated into soluble and membrane proteins. In the context of the Xenopus laevis oocyte expression system, this technique yields ion channels with encoded Cy-ncAAs that are trafficked to the plasma membrane where they display robust function and distinct fluorescent signals as detected by TIRF microscopy. This is the first demonstration of an encoded cyanine dye as a ncAA in a eukaryotic expression system and opens the door for the analysis of proteins with single-molecule resolution in a cellular environment.


2016 ◽  
Vol 310 (3) ◽  
pp. F204-F216 ◽  
Author(s):  
Omar A. Z. Tutakhel ◽  
Sabina Jeleń ◽  
Marco Valdez-Flores ◽  
Henrik Dimke ◽  
Sander R. Piersma ◽  
...  

The thiazide-sensitive NaCl cotransporter (NCC) is an important pharmacological target in the treatment of hypertension. The human SLC12A3 gene, encoding NCC, gives rise to three isoforms. Only the third isoform has been extensively investigated. The aim of the present study was, therefore, to establish the abundance and localization of the almost identical isoforms 1 and 2 (NCC1/2) in the human kidney and to determine their functional properties and regulation in physiological conditions. Immunohistochemical analysis of NCC1/2 in the human kidney revealed that NCC1/2 localizes to the apical plasma membrane of the distal convoluted tubule. Importantly, NCC1/2 mRNA constitutes ∼44% of all NCC isoforms in the human kidney. Functional analysis performed in the Xenopus laevis oocyte revealed that thiazide-sensitive 22Na+ transport of NCC1 was significantly increased compared with NCC3. Mimicking a constitutively active phosphorylation site at residue 811 (S811D) in NCC1 further augmented Na+ transport, while a nonphosphorylatable variant (S811A) of NCC1 prevented this enhanced response. Analysis of human urinary exosomes demonstrated that water loading in human subjects significantly reduces the abundance of NCC1/2 in urinary exosomes. The present study highlights that previously underrepresented NCC1/2 is a fully functional thiazide-sensitive NaCl-transporting protein. Being significantly expressed in the kidney, it may constitute a unique route of renal NaCl reabsorption and could, therefore, play an important role in blood pressure regulation.


2016 ◽  
Vol 310 (2) ◽  
pp. F152-F159 ◽  
Author(s):  
Greg M. Landry ◽  
Taku Hirata ◽  
Jacob B. Anderson ◽  
Pablo Cabrero ◽  
Christopher J. R. Gallo ◽  
...  

Nephrolithiasis is one of the most common urinary tract disorders, with the majority of kidney stones composed of calcium oxalate (CaOx). Given its prevalence (US occurrence 10%), it is still poorly understood, lacking progress in identifying new therapies because of its complex etiology. Drosophila melanogaster (fruitfly) is a recently developed model of CaOx nephrolithiasis. Effects of sulfate and thiosulfate on crystal formation were investigated using the Drosophila model, as well as electrophysiological effects on both Drosophila (Slc26a5/6; dPrestin) and mouse (mSlc26a6) oxalate transporters utilizing the Xenopus laevis oocyte heterologous expression system. Results indicate that both transport thiosulfate with a much higher affinity than sulfate Additionally, both compounds were effective at decreasing CaOx crystallization when added to the diet. However, these results were not observed when compounds were applied to Malpighian tubules ex vivo. Neither compound affected CaOx crystallization in dPrestin knockdown animals, indicating a role for principal cell-specific dPrestin in luminal oxalate transport. Furthermore, thiosulfate has a higher affinity for dPrestin and mSlc26a6 compared with oxalate These data indicate that thiosulfate's ability to act as a competitive inhibitor of oxalate via dPrestin, can explain the decrease in CaOx crystallization seen in the presence of thiosulfate, but not sulfate. Overall, our findings predict that thiosulfate or oxalate-mimics may be effective as therapeutic competitive inhibitors of CaOx crystallization.


Sign in / Sign up

Export Citation Format

Share Document