scholarly journals Horizontal cell gap junctions: single-channel conductance and modulation by dopamine.

1989 ◽  
Vol 86 (19) ◽  
pp. 7639-7643 ◽  
Author(s):  
D. G. McHahon ◽  
A. G. Knapp ◽  
J. E. Dowling
1989 ◽  
Vol 61 (1) ◽  
pp. 162-172 ◽  
Author(s):  
T. J. O'Dell ◽  
B. N. Christensen

1. Horizontal cells enzymatically isolated from retinas of the Atlantic stingray (Dasyatis sabina) were voltage-clamped using the patch electrode in the whole-cell mode. A rapid microsuperfusion system was used to apply excitatory amino acid agonists and antagonists. 2. The isolated cells responded to glutamate (GLU), kainate (KA), quisqualate (QA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Responses elicited by GLU, QA, and AMPA but not KA exhibited a concentration-dependent and concanavalin A- (Con-A) sensitive desensitization. No responses were elicited by aspartate, N-methyl-D-aspartate, or quinolinate at concentrations as high as 1.0 mM. 3. Judging from the concentration producing one-half of the maximal current response (EC50), the rank order affinities of the agonists was QA greater than or equal to GLU greater than AMPA greater than KA. Whereas KA had the lowest affinity of the agonists tested it was the most efficacious, producing the largest currents. Hill coefficients of the concentration-response data were near two for KA and GLU and near one for QA and AMPA. 4. The agonists differed in their sensitivity to various excitatory amino acid receptor antagonists. Kynurenate (KYN) produced a nearly complete block of horizontal cell responses to GLU and KA at concentrations that had little effect on QA and AMPA. Piperidine-2,3-dicarboxylic acid (cis-PDA), 1-(4-chlorobenzoyl)-piperazine-2,3-dicarboxylic acid (pCB-PzDA), and folic acid were less potent antagonists than KYN but were also better blockers of KA and GLU responses than of QA- and AMPA-elicited responses. 5. When QA, AMPA, or GLU were applied in combination with 55.0 microM KA the current was less than that produced by KA alone. The rank order potency for the inhibition of KA-elicited responses was QA greater than AMPA greater than GLU. In the presence of low concentrations of KA (1.0-20.0 microM), QA- and AMPA-elicited responses were potentiated. This potentiation was prevented by KYN. 6. Single-channel conductance and mean open time were estimated from the current noise fluctuations in the presence of agonist. The mean single-channel conductance for QA was 9 pS that was almost twice as large as the conductance for KA (5.9 pS) and GLU (5.7 pS). The mean open time in the presence of QA or GLU was approximately 1 ms, which was about one-half of that for KA (2.0 ms). 7. These results are best explained by the existence of a single receptor protein with multiple but not identical ligand-binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)


2020 ◽  
Vol 118 (3) ◽  
pp. 274a
Author(s):  
Benny Yue ◽  
Bassam G. Haddad ◽  
Umair Khan ◽  
Mena Atalla ◽  
Steve L. Reichow ◽  
...  

2013 ◽  
Vol 141 (4) ◽  
pp. 493-497 ◽  
Author(s):  
Yanyan Geng ◽  
Xiaoyu Wang ◽  
Karl L. Magleby

Large-conductance, voltage- and Ca2+-activated K+ (BK) channels display near linear current–voltage (I-V) plots for voltages between −100 and +100 mV, with an increasing sublinearity for more positive potentials. As is the case for many types of channels, BK channels are blocked at positive potentials by intracellular Ca2+ and Mg2+. This fast block progressively reduces single-channel conductance with increasing voltage, giving rise to a negative slope in the I-V plots beyond about +120 mV, depending on the concentration of the blockers. In contrast to these observations of pronounced differences in the magnitudes and shapes of I-V plots in the absence and presence of intracellular blockers, Schroeder and Hansen (2007. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.200709802) have reported identical I-V plots in the absence and presence of blockers for BK channels, with both plots having reduced conductance and negative slopes, as expected for blockers. Schroeder and Hansen included both Ca2+ and Mg2+ in the intracellular solution rather than a single blocker, and they also studied BK channels expressed from α plus β1 subunits, whereas most previous studies used only α subunits. Although it seems unlikely that these experimental differences would account for the differences in findings between previous studies and those of Schroeder and Hansen, we repeated the experiments using BK channels comprised of α plus β1 subunits with joint application of 2.5 mM Ca2+ plus 2.5 mM Mg2+, as Schroeder and Hansen did. In contrast to the findings of Schroeder and Hansen of identical I-V plots, we found marked differences in the single-channel I-V plots in the absence and presence of blockers. Consistent with previous studies, we found near linear I-V plots in the absence of blockers and greatly reduced currents and negative slopes in the presence of blockers. Hence, studies of conductance mechanisms for BK channels should exclude intracellular Ca2+/Mg2+, as they can reduce conductance and induce negative slopes.


1994 ◽  
Vol 267 (3) ◽  
pp. F489-F496 ◽  
Author(s):  
S. C. Sansom ◽  
T. Mougouris ◽  
S. Ono ◽  
T. D. DuBose

The inner medullary collecting duct (IMCD) in vivo has the capacity to either secrete or reabsorb K+. However, a selective K+ conductance has not been described previously in the IMCD. In the present study, the patch-clamp method was used to determine the presence and properties of K(+)-selective channels in the apical membrane of the inner medullary collecting duct cell line, mIMCD-3. Two types of K(+)-selective channels were observed in both cell-attached and excised patches. The most predominant K+ channel, a smaller conductance K+ channel (SK), was present in cell-attached patches with 140 mM KCl (high bath K+) but not with 135 mM NaCl plus 5 mM KCl (low bath K+) in the bathing solution. The single-channel conductance of SK was 36 pS with inward currents and 29 pS with outward currents in symmetrical 140 mM KCl. SK was insensitive to both voltage and Ca2+. However, SK was inhibited significantly by millimolar concentrations of ATP in excised patches. A second K(+)-selective channel [a larger K+ channel (BK)] displayed a single-channel conductance equal to 132 pS with inward currents and 90 pS with outward currents in symmetrical 140 mM KCl solutions. BK was intermittently activated in excised inside-out patches by Mg(2+)-ATP in concentrations from 1 to 5 mM. With complete removal of Mg2+, BK was insensitive to ATP. BK was also insensitive to potential and Ca2+ and was observed in cell-attached patches with 140 mM KCl in the bath solution. Both channels were blocked reversibly by 1 mM Ba2+ from the intracellular surface but not by external Ba2+.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 253 (3) ◽  
pp. F476-F487 ◽  
Author(s):  
H. Sackin ◽  
L. G. Palmer

Potassium (K+) channels in the basolateral membrane of unperfused Necturus proximal tubules were studied in both cell-attached and excised patches, after removal of the tubule basement membrane by manual dissection without collagenase. Two different K+ channels were identified on the basis of their kinetics: a short open-time K+ channel, with a mean open time less than 1 ms, and a long open-time K+ channel with a mean open time greater than 20 ms. The short open-time channel occurred more frequently than the longer channel, especially in excised patches. For inside-out excised patches with Cl- replaced by gluconate, the current-voltage relation of the short open-time K+ channel was linear over +/- 60 mV, with a K+-Na+ selectivity of 12 +/- 2 (n = 12), as calculated from the reversal potential with oppositely directed Na+ and K+ gradients. With K-Ringer in the patch pipette and Na-Ringer in the bath, the conductance of the short open-time channel was 47 +/- 2 pS (n = 15) for cell-attached patches, 26 +/- 2 pS (n = 15) for patches excised (inside out) into Na-Ringer, and 36 +/- 6 pS (n = 3) for excised patches with K-Ringer on both sides. These different conductances can be partially explained by a dependence of single-channel conductance on the K+ concentration on the interior side of the membrane. In experiments with a constant K+ gradient across excised patches, large changes in Na+ at the interior side of the membrane produced no change in single-channel conductance, arguing against a direct block of the K+ channel by Na+. Finally, the activity of the short open-time channel was voltage gated, where the mean number of open channels decreased as a linear function of basolateral membrane depolarization for potentials between -60 and 0 mV. Depolarization from -60 to -40 mV decreased the mean number of open K+ channels by 28 +/- 8% (n = 6).


Sign in / Sign up

Export Citation Format

Share Document