excised patches
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 2)

H-INDEX

38
(FIVE YEARS 0)

Author(s):  
Richard Gray ◽  
Daniel Johnston

Potassium channels play an important role regulating transmembrane electrical activity in essentially all cell types. We were especially interested in those that determine the intrinsic electrical properties of mammalian central neurons. Over 30 different potassium channels have been molecularly identified in brain neurons, but there often is not a clear distinction between molecular structure and the function of a particular channel in the cell. Using patch-clamp methods to search for single potassium channels in excised inside-out (ISO) somatic patches with symmetrical potassium, we found that nearly all patches contained non-voltage-inactivating channels with a single-channel conductance of 100-200 pS. This conductance range is consistent with the family of sodium-activated potassium channels (Slo2.1, Slo2.2 or collectively, KNa). The activity of these channels was positively correlated with a low cytoplasmic Na+ concentration (2-20 mM). Cell-attached recordings from intact neurons, however, showed little or no activity of this K+ channel. Attempts to increase channel activity by increasing [Na+]i with bursts of action potentials or direct perfusion of Na+ through a whole-cell pipette had little effect on KNa channel activity. Furthermore, excised outside-out patches across a range of intracellular [Na+] showed less channel activity than we had seen with excised ISO patches. Blocking the Na+/K+ pump with ouabain increased the activity of the KNa channels in excised OSO patches to levels comparable to ISO excised patches. Our results suggest that despite their apparent high levels of expression the activity of somatic KNa channels is tightly regulated by the activity of the Na+/K+ pump.


2019 ◽  
Author(s):  
Aysenur Torun Yazici ◽  
Eleonora Gianti ◽  
Marina A. Kasimova ◽  
Vincenzo Carnevale ◽  
Tibor Rohacs

AbstractRegulation of the heat- and capsaicin-activated Transient Receptor Potential Vanilloid 1 (TRPV1) channel by phosphoinositides is controversial. In a recent cryoEM structure, an endogenous phosphoinositide was detected in the vanilloid binding site, and phosphoinositides were proposed to act as competitive vanilloid antagonists. This model is difficult to reconcile with phosphatidylinositol 4,5- bisphosphate [PtdIns(4,5)P2] being a well established positive regulator of TRPV1. To resolve this controversy, we propose that phosphoinositides regulate TRPV1 via two functionally distinct binding sites. Our molecular dynamics simulations show that phosphatidylinositol (PtdIns) is more stable in the vanilloid binding site, whereas a distinct site responsible for activation is preferentially occupied by PtdIns(4,5)P2. Consistently, we show that in the presence of PtdIns(4,5)P2 in excised patches PtdIns partially inhibited TRPV1 activity induced by low, but not high capsaicin concentrations. In the absence of PtdIns(4,5)P2 on the other hand, PtdIns partially stimulated TRPV1 activity presumably by binding to the activating site. Overall, our data resolve a major controversy in the regulation of TRPV1.


2017 ◽  
Vol 149 (5) ◽  
pp. 595-609 ◽  
Author(s):  
Uğur Çetiner ◽  
Ian Rowe ◽  
Anthony Schams ◽  
Christina Mayhew ◽  
Deanna Rubin ◽  
...  

Pseudomonas aeruginosa (PA) is an opportunistic pathogen with an exceptional ability to adapt to a range of environments. Part of its adaptive potential is the ability to survive drastic osmolarity changes. Upon a sudden dilution of external medium, such as during exposure to rain, bacteria evade mechanical rupture by engaging tension-activated channels that act as osmolyte release valves. In this study, we compare fast osmotic permeability responses in suspensions of wild-type PA and Escherichia coli (EC) strains in stopped-flow experiments and provide electrophysiological descriptions of osmotic-release channels in PA. Using osmotic dilution experiments, we first show that PA tolerates a broader range of shocks than EC. We record the kinetics of cell equilibration reported by light scattering responses to osmotic up- and down-shocks. PA exhibits a lower water permeability and faster osmolyte release rates during large osmotic dilutions than EC, which correlates with better survival. To directly characterize the PA tension-activated channels, we generate giant spheroplasts from this microorganism and record current responses in excised patches. Unlike EC, which relies primarily on two types of channels, EcMscS and EcMscL, to generate a distinctive two-wave pressure ramp response, PA exhibits a more gradual response that is dominated by MscL-type channels. Genome analysis, cloning, and expression reveal that PA possesses one MscL-type (PaMscL) and two MscS-type (PaMscS-1 and 2) proteins. In EC spheroplasts, both PaMscS channels exhibit a slightly earlier activation by pressure compared with EcMscS. Unitary currents reveal that PaMscS-2 has a smaller conductance, higher anionic preference, stronger inactivation, and slower recovery compared with PaMscS-1. We conclude that PA relies on MscL as the major valve defining a high rate of osmolyte release sufficient to curb osmotic swelling under extreme shocks, but it still requires MscS-type channels with a strong propensity to inactivation to properly terminate massive permeability response.


2016 ◽  
Vol 310 (2) ◽  
pp. C136-C141 ◽  
Author(s):  
Jianjun Xu ◽  
Lifeng Yu ◽  
Etsuko Minobe ◽  
Liting Lu ◽  
Ming Lei ◽  
...  

Calmodulin (CaM) + ATP can reprime voltage-gated L-type Ca2+ channels (CaV1.2) in inside-out patches for activation, but this effect decreases time dependently. This suggests that the CaV1.2 channel activity is regulated by additional cytoplasmic factors. To test this hypothesis, we examined the role of cAMP-dependent protein kinase A (PKA) and protein phosphatases in the regulation of CaV1.2 channel activity in the inside-out mode in guinea pig ventricular myocytes. CaV1.2 channel activity quickly disappeared after the patch was excised from the cell and recovered to only 9% of that in the cell-attached mode on application of CaM + ATP at 10 min after the inside out. However, immediate exposure of the excised patch to the catalytic subunit of PKA + ATP or the nonspecific phosphatase inhibitor okadaic acid significantly increased the CaV1.2 channel activity recovery by CaM + ATP (114 and 96%, respectively) at 10 min. Interestingly, incubation of the excised patches with cAMP + ATP also increased CaM/ATP-induced CaV1.2 channel activity recovery (108%), and this effect was blocked by the nonspecific protein kinase inhibitor K252a. The channel activity in the inside-out mode was not maintained by either catalytic subunit of PKA or cAMP + ATP in the absence of CaM, but was stably maintained in the presence of CaM for more than 40 min. These results suggest that PKA and phosphatase(s) attached on or near the CaV1.2 channel regulate the basal channel activity, presumably through modulation of the dynamic CaM interaction with the channel.


2014 ◽  
Vol 143 (2) ◽  
pp. 253-267 ◽  
Author(s):  
Kuai Yu ◽  
Jinqiu Zhu ◽  
Zhiqiang Qu ◽  
Yuan-Yuan Cui ◽  
H. Criss Hartzell

The Ca2+-activated Cl channel anoctamin-1 (Ano1; Tmem16A) plays a variety of physiological roles, including epithelial fluid secretion. Ano1 is activated by increases in intracellular Ca2+, but there is uncertainty whether Ca2+ binds directly to Ano1 or whether phosphorylation or additional Ca2+-binding subunits like calmodulin (CaM) are required. Here we show that CaM is not necessary for activation of Ano1 by Ca2+ for the following reasons. (a) Exogenous CaM has no effect on Ano1 currents in inside-out excised patches. (b) Overexpression of Ca2+-insensitive mutants of CaM have no effect on Ano1 currents, whereas they eliminate the current mediated by the small-conductance Ca2+-activated K+ (SK2) channel. (c) Ano1 does not coimmunoprecipitate with CaM, whereas SK2 does. Furthermore, Ano1 binds very weakly to CaM in pull-down assays. (d) Ano1 is activated in excised patches by low concentrations of Ba2+, which does not activate CaM. In addition, we conclude that reversible phosphorylation/dephosphorylation is not required for current activation by Ca2+ because the current can be repeatedly activated in excised patches in the absence of ATP or other high-energy compounds. Although Ano1 is blocked by the CaM inhibitor trifluoperazine (TFP), we propose that TFP inhibits the channel in a CaM-independent manner because TFP does not inhibit Ano1 when applied to the cytoplasmic side of excised patches. These experiments lead us to conclude that CaM is not required for activation of Ano1 by Ca2+. Although CaM is not required for channel opening by Ca2+, work of other investigators suggests that CaM may have effects in modulating the biophysical properties of the channel.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Fu-qing Zhong ◽  
Yang Li ◽  
Xian-qiang Mi

Background and Objective. ATP-sensitive potassium (KATP) channel couples cell metabolism to excitability. To explore role of KATP channels in cellular photobiomodulation, we designed experiment to study effect of low intensity 808 nm laser irradiation on the activity of membrane KATP channel.Study Design/Materials and Methods. Plasmids encoding Kir6.2 was constructed and heterologously expressed in cultured mammalian HEK-293 cells. The patch-clamp and data acquisition systems were used to record KATP channel current before and after irradiation. A laser beam of Ga-As 808 nm at 5 mW/cm2was used in experiments. A one-way ANOVA test followed by apost hocStudent-Newman-Keuls test was used to assess the statistical differences between data groups.Results. Obvious openings of KATP channels of Kir6.2-transfected HEK-293 cells and excised patches were recorded during and after low intensity 808 nm laser irradiation. Compared with the channels that did not undergo irradiation, open probability, current amplitude, and dwell time of KATP channels after irradiation improved.Conclusions. Low intensity 808 nm laser irradiation may activate membrane KATP channels of Kir6.2-transfected HEK-293 cells and in excised patches.


2013 ◽  
Vol 304 (11) ◽  
pp. H1471-H1482 ◽  
Author(s):  
Fabiana S. Scornik ◽  
Ronald S. Bucciero ◽  
Yuesheng Wu ◽  
Elisabet Selga ◽  
Cristina Bosch Calero ◽  
...  

The voltage-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol [DiBAC4(3)] has been reported as a novel large-conductance Ca2+-activated K+ (BK) channel activator with selectivity for its β1- or β4-subunits. In arterial smooth muscle, BK channels are formed by a pore-forming α-subunit and a smooth muscle-abundant regulatory β1-subunit. This tissue specificity has driven extensive pharmacological research aimed at regulating arterial tone. Using animals with a disruption of the gene for the β1-subunit, we explored the effects of DiBAC4(3) in native channels from arterial smooth muscle. We tested the hypothesis that, in native BK channels, activation by DiBAC4(3) relies mostly on its α-subunit. We studied BK channels from wild-type and transgenic β1-knockout mice in excised patches. BK channels from brain arteries, with or without the β1-subunit, were similarly activated by DiBAC4(3). In addition, we found that saturating concentrations of DiBAC4(3) (∼30 μM) promote an unprecedented persistent activation of the channel that negatively shifts its voltage dependence by as much as −300 mV. This “sweet spot” for persistent activation is independent of Ca2+ and/or the β1–4-subunits and is fully achieved when DiBAC4(3) is applied to the intracellular side of the channel. Arterial BK channel response to DiBAC4(3) varies across species and/or vascular beds. DiBAC4(3) unique effects can reveal details of BK channel gating mechanisms and help in the rational design of BK channel activators.


2011 ◽  
Vol 138 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Kishore Kamaraju ◽  
Vladislav Belyy ◽  
Ian Rowe ◽  
Andriy Anishkin ◽  
Sergei Sukharev

The mechanosensitive channel of small conductance (MscS) is a bacterial tension-driven osmolyte release valve with homologues in many walled eukaryotic organisms. When stimulated by steps of tension in excised patches, Escherichia coli MscS exhibits transient opening followed by reversible adaptation and then complete inactivation. Here, we study properties of the inactivation transition, which renders MscS nonconductive and tension insensitive. Using special pressure protocols we demonstrate that adaptation and inactivation are sequential processes with opposite tension dependencies. In contrast to many eukaryotic channels, which inactivate from the open state, MscS inactivates primarily from the closed state because full openings by preconditioning pulses do not influence the degree of inactivation, and saturating tensions keeping channels open prevent inactivation. The easily opened A98S mutant lacks inactivation completely, whereas the L111S mutant with a right-shifted activation curve inactivates silently before reaching the threshold for opening. This suggests that opening and inactivation are two independent tension-driven pathways, both starting from the closed state. Analysis of tension dependencies for inactivation and recovery rates estimated the in-plane expansion (ΔA) associated with inactivation as 8.5 nm2, which is about half of the area change for opening. Given that the interhelical contact between the outer TM1–TM2 pairs and the core TM3s is the force-transmitting path from the periphery to the gate, the determined ΔA now can be used as a constraining parameter for the models of the inactivated state in which the lipid-facing TM1–TM2 pairs are displaced and uncoupled from the gate.


2011 ◽  
Vol 100 (3) ◽  
pp. 104a
Author(s):  
Jana Kusch ◽  
Ralf Schmauder ◽  
Christoph Biskup ◽  
Vasilica Nache ◽  
Klaus Benndorf

2010 ◽  
Vol 135 (6) ◽  
pp. 641-652 ◽  
Author(s):  
Vladislav Belyy ◽  
Kishore Kamaraju ◽  
Bradley Akitake ◽  
Andriy Anishkin ◽  
Sergei Sukharev

Mechanosensitive channel of small conductance (MscS), a tension-driven osmolyte release valve residing in the inner membrane of Escherichia coli, exhibits a complex adaptive behavior, whereas its functional counterpart, mechanosensitive channel of large conductance (MscL), was generally considered nonadaptive. In this study, we show that both channels exhibit similar adaptation in excised patches, a process that is completely separable from inactivation prominent only in MscS. When a membrane patch is held under constant pressure, adaptation of both channels is manifested as a reversible current decline. Their dose–response curves recorded with 1–10-s ramps of pressure are shifted toward higher tension relative to the curves measured with series of pulses, indicating decreased tension sensitivity. Prolonged exposure of excised patches to subthreshold tensions further shifts activation curves for both MscS and MscL toward higher tension with similar magnitude and time course. Whole spheroplast MscS recordings performed with simultaneous imaging reveal activation curves with a midpoint tension of 7.8 mN/m and the slope corresponding to ∼15-nm2 in-plane expansion. Inactivation was retained in whole spheroplast mode, but no adaptation was observed. Similarly, whole spheroplast recordings of MscL (V23T mutant) indicated no adaptation, which was present in excised patches. MscS activities tried in spheroplast-attached mode showed no adaptation when the spheroplasts were intact, but permeabilized spheroplasts showed delayed adaptation, suggesting that the presence of membrane breaks or edges causes adaptation. We interpret this in the framework of the mechanics of the bilayer couple linking adaptation of channels in excised patches to the relaxation of the inner leaflet that is not in contact with the glass pipette. Relaxation of one leaflet results in asymmetric redistribution of tension in the bilayer that is less favorable for channel opening.


Sign in / Sign up

Export Citation Format

Share Document