scholarly journals Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy.

1992 ◽  
Vol 89 (4) ◽  
pp. 1388-1392 ◽  
Author(s):  
T. Ried ◽  
A. Baldini ◽  
T. C. Rand ◽  
D. C. Ward
Cytometry ◽  
1992 ◽  
Vol 13 (8) ◽  
pp. 839-845 ◽  
Author(s):  
P. M. Nederlof ◽  
S. van der Flier ◽  
J. Vrolijk ◽  
H. J. Tanke ◽  
A. K. Raap

1992 ◽  
Vol 119 (5) ◽  
pp. 1245-1260 ◽  
Author(s):  
K L Taneja ◽  
L M Lifshitz ◽  
F S Fay ◽  
R H Singer

The distribution of poly(A) RNA has been visualized in single cells using high-resolution fluorescent in situ hybridization. Digital imaging microscopy was used to quantitate the signal in various cellular compartments. Most of the poly(A) signal remained associated with the cellular filament systems after solubilization of membranes with Triton, dissociation of ribosomes with puromycin, and digestion of non-poly(A) RNA with ribonuclease A and T1. The actin filaments were shown to be the predominant cellular structural elements associating with the poly(A) because low doses of cytochalasin released about two-thirds of the poly(A). An approach to assess the extent of colocalization of two images was devised using in situ hybridization to poly(A) in combination with probes for ribosomes, membranes, or F-actin. Digital imaging microscopy showed that most poly(A) spatially distributes most significantly with ribosomes, slightly less with F-actin, and least of all with membranes. The results suggest a mechanism for anchoring (and perhaps moving) much of the cellular mRNA utilizing the interaction between actin filaments and poly(A).


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1819
Author(s):  
Tatyana Karamysheva ◽  
Svetlana Romanenko ◽  
Alexey Makunin ◽  
Marija Rajičić ◽  
Alexey Bogdanov ◽  
...  

The gene composition, function and evolution of B-chromosomes (Bs) have been actively discussed in recent years. However, the additional genomic elements are still enigmatic. One of Bs mysteries is their spatial organization in the interphase nucleus. It is known that heterochromatic compartments are not randomly localized in a nucleus. The purpose of this work was to study the organization and three-dimensional spatial arrangement of Bs in the interphase nucleus. Using microdissection of Bs and autosome centromeric heterochromatic regions of the yellow-necked mouse (Apodemus flavicollis) we obtained DNA probes for further two-dimensional (2D)- and three-dimensional (3D)- fluorescence in situ hybridization (FISH) studies. Simultaneous in situ hybridization of obtained here B-specific DNA probes and autosomal C-positive pericentromeric region-specific probes further corroborated the previously stated hypothesis about the pseudoautosomal origin of the additional chromosomes of this species. Analysis of the spatial organization of the Bs demonstrated the peripheral location of B-specific chromatin within the interphase nucleus and feasible contact with the nuclear envelope (similarly to pericentromeric regions of autosomes and sex chromosomes). It is assumed that such interaction is essential for the regulation of nuclear architecture. It also points out that Bs may follow the same mechanism as sex chromosomes to avoid a meiotic checkpoint.


2006 ◽  
Vol 72 (8) ◽  
pp. 5311-5317 ◽  
Author(s):  
Kengo Kubota ◽  
Akiyoshi Ohashi ◽  
Hiroyuki Imachi ◽  
Hideki Harada

ABSTRACT Low signal intensity due to poor probe hybridization efficiency is one of the major drawbacks of rRNA-targeted in situ hybridization. There are two major factors affecting the hybridization efficiency: probe accessibility and affinity to the targeted rRNA molecules. In this study, we demonstrate remarkable improvement in in situ hybridization efficiency by applying locked-nucleic-acid (LNA)-incorporated oligodeoxynucleotide probes (LNA/DNA probes) without compromising specificity. Fluorescently labeled LNA/DNA probes with two to four LNA substitutions exhibited strong fluorescence intensities equal to or greater than that of probe Eub338, although these probes did not show bright signals when they were synthesized as DNA probes; for example, the fluorescence intensity of probe Eco468 increased by 22-fold after three LNA bases were substituted for DNA bases. Dissociation profiles of the probes revealed that the dissociation temperature was directly related to the number of LNA substitutions and the fluorescence intensity. These results suggest that the introduction of LNA residues in DNA probes will be a useful approach for effectively enhancing probe hybridization efficiency.


1991 ◽  
Vol 40 (1) ◽  
pp. 117-120 ◽  
Author(s):  
Avirachan T. Tharapel ◽  
Mazin B. Qumsiyeh ◽  
Paula R. Martens ◽  
Sugandhi A. Tharapel ◽  
James D. Dalton ◽  
...  

1991 ◽  
Vol 35 (1) ◽  
pp. 81-91 ◽  
Author(s):  
J.T. McClintock ◽  
M. Mosher ◽  
S.R. Thaker ◽  
W.K. Wacker ◽  
D. Jones ◽  
...  

1992 ◽  
Vol 67 (2) ◽  
pp. 59-67 ◽  
Author(s):  
N. Arnold ◽  
R. Seibl ◽  
C. Kessler ◽  
J. Wienberg

Sign in / Sign up

Export Citation Format

Share Document