scholarly journals Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III.

1992 ◽  
Vol 89 (8) ◽  
pp. 3566-3570 ◽  
Author(s):  
E. A. Lachica ◽  
P. D. Beck ◽  
V. A. Casagrande

Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


1990 ◽  
Vol 4 (6) ◽  
pp. 555-578 ◽  
Author(s):  
Anne Morel ◽  
Jean Bullier

AbstractA number of lines of evidence suggest that, in the macaque monkey, inferior parietal and inferotemporal cortices process different types of visual information. It has been suggested that visual information reaching these two subdivisions follows separate pathways from the striate cortex through the prestriate cortex. We examined directly this possibility by placing injections of the retrograde fluorescent tracers, fast blue and diamidino yellow, in inferior parietal and inferotemporal cortex and examining the spatial pattern of cortical areas containing labeled cells in two-dimensional reconstructions of the cortex.The results of injections in inferotemporal cortex show that TEO receives afferents from areas V2, ventral V3, V3A, central V4, V4t, and DPL in prestriate cortex and from areas IPa, PGa, and FST in the superior temporal sulcus (STS). Area TEp receives afferents only from V4 in prestriate cortex and from IPa, PGa, and FST in the anterior STS. Area TEa receives no prestriate input and is innervated by IPa, PGa, FST, and TPO in the anterior STS.The results of injections in inferior parietal cortex demonstrate that POa receives afferents from dorsal V3, V3A, peripheral V4, DPL, and PO in prestriate cortex, from MST and *VIP and from IPa, PGa, TPO, and FST in anterior STS. Area PGc (corresponding to 7a) is innervated by PO, MST, and by TPO in the anterior STS.Examination of the two-dimensional reconstructions of the pattern of labeling after combined injections of fast blue and diamidino yellow in areas POa and TEO revealed that these areas are principally innervated by different prestriate areas. Only a small region, centered on area V3A and extending into V4 and DPL, contained cells labeled by either injection as well as a small number of double-labeled cells. In contrast, areas POa and TEO receive afferents from extensive common regions in the anterior STS corresponding to areas IPa, PGa, and FST.These results directly demonstrate that visual information from the striate cortex reaches inferior parietal and inferotemporal cortices through largely separate prestriate cortical pathways. On the other hand, both parietal and inferotemporal cortices receive common inputs from extensive regions in the anterior STS which may play a role in linking the processing occurring in these two cortical subdivisions of the visual system.


1990 ◽  
Vol 4 (3) ◽  
pp. 205-216 ◽  
Author(s):  
W. Fries

AbstractThe projection from striate and prestriate visual cortex to the pontine nuclei has been studied in the macaque monkey by means of anterograde tracer techniques in order to assess the contribution of anatomically and functionally distinct visual cortical areas to the cortico-ponto-cerebellar loop. No projection to the pons was found from central or paracentral visual-field representations of V1 (striate cortex) or prestriate visual areas V2, and V4. Small patches of terminal labeling occurred after injections of tracer into more peripheral parts of V1, V2 and V3, and into V3A. The terminal fields were located most dorsolaterally in the anterior to middle third of the pons and were quite restricted in their rostro-caudal extent. Injections of V5, however, yielded substantial terminal labeling, stretching longitudinally throughout almost the entire pons. This projection could be demonstrated to arise from parts of V5 receiving input from central visual-field representations of striate cortex, whereas parts of V4 receiving similarly central visual-field input had no detectable projection to the pons. Its distribution may overlap to a large extent with the termination of tecto-pontine fibers and with the termination of fibers from visual areas in the medial bank (area V6 or P0) and lateral bank (area LIP) of the intraparietal sulcus, as well as from frontal eye fields (FEF). It appears that the main information relayed to the cerebellum by the visual corticopontine projection is related to movement in the field of view.


1992 ◽  
Vol 8 (6) ◽  
pp. 491-504 ◽  
Author(s):  
B. S. Zielinski ◽  
A. E. Hendrickson

AbstractA quantitative electron-microscopic (EM) analysis of the development of synaptic density (number of synapses/100 μm neuropil) has been done in primary visual cortex (striate, area 17) of the Old World monkey Macaca nemesthna. A comparative EM morphological study of developing synaptic contacts also was done in the same tissue. We find that a few immature synaptic contacts are present at fetal (F) 75 days either in the marginal zone, which becomes layer 1, or in the deepest portion of the cortical plate, the future layer 6. At F90–140 days synaptic contacts are found throughout the cortical plate, but their density remains higher in lower cortical layers. By F140 days synaptic density averaged for all layers (10.9) is three times higher than at F90 days. Just before and after birth, synaptic density rises very rapidly to peak at postnatal (P)12 weeks (63) and then declines slowly to reach adult values (37.7) between 2–6 years. This pattern was further tested by comparing synaptic density in layer 2 which contains the last cells generated in the striate cortex to that in layer 6 which contains the first cells generated in the striate cortex. Layer 6 contained the first synapses, and had a higher density up to F140 days (an “inside-to-outside” distribution). Synaptic density was equal in the two layers at F152 days and P2 days, but by P12 weeks synaptic density in layer 2 was 27% higher than that in layer 6 (an “outside-to-inside” distribution). After P12 weeks, the synaptic density declined 51% in layer 2 and 21% in layer 6 so that both layers achieved similar densities by P6 years.A light and EM comparison of neuropil and synaptic contact morphology finds that, at each age up to birth, synapses in layer 2 are generally less mature than those in layer 6, but these differences disappear shortly after birth. Between P6–24 weeks, synaptic contacts throughout the cortex acquire a mature morphology that clearly differentiates between asymmetric and symmetric types, although asymmetric contacts continue to acquire more postsynaptic density until adulthood.This complex developmental pattern suggests a sequence for synaptic developments which is more related to neuron birthdate than to the arrival of extrinsic pathways or developmental events occurring in specific laminae.


1999 ◽  
Vol 82 (5) ◽  
pp. 2182-2196 ◽  
Author(s):  
N. D. Schiff ◽  
K. P. Purpura ◽  
J. D. Victor

Neuronal activity often is treated as a composition of a stimulus-driven component and a second component that corrupts the signal, adding or deleting spikes at random. Standard quantitative methods such as peristimulus histograms and Fourier analysis use stimulus-locked averaging to enhance detection of the driven component of neuronal responses and de-emphasize the “noise.” However, neural activity also includes bursts, oscillations, and other episodic events that standard averaging methods overlook. If this activity is stimulus independent, it can be characterized by standard power spectral analysis (or autocorrelation). But activity that is excited by (but not temporally locked to) the visual stimulus cannot be characterized by averaging or standard spectral analysis. Phase-locked spectral analysis (PLSA) is a new method that examines this “residual” activity—the difference between the individual responses to each cycle of a periodic stimulus and their average. With PLSA, residual activity is characterized in terms of temporal envelopes and their carriers. Previously, PLSA demonstrated broadband interactions between periodic visual stimuli and fluctuations in the local field potential of macaque V1. In the present study, single-unit responses (SUA) from parafoveal V1 in anesthetized macaque monkey are examined with this technique. Recordings were made from 21 neurons, 6 of which were recorded in pairs along with multiunit activity (MUA) from separate electrodes and 8 of which were recorded along with MUA from the same electrode. PLSA was applied to responses to preferred (orientation, direction, and spatial frequency) and nonpreferred drifting gratings. For preferred stimuli, all cells demonstrated broadband (1–10 Hz and higher) residual activity that waxed and waned with the stimulus cycle, suggesting that changes in the residual activity are introduced routinely by visual stimulation. Moreover, some reconstructed envelopes indicate that the residual activity was sharply gated by the stimulus cycle. Oscillations occasionally were seen in the power spectrum of single units. Phase-locked cross-spectra were determined for 3 SUA/SUA pairs and 11 SUA/MUA pairs. Residual activity in the cross-spectra was generally much less than the residual activity determined separately from each neuron. The reduction in the residual activity in the cross-spectra suggests that nearby neurons may gate inputs from distinct and relatively independent neuronal subpopulations that together generate the background rhythms of striate cortex.


Sign in / Sign up

Export Citation Format

Share Document