anterograde tracer
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 8)

H-INDEX

24
(FIVE YEARS 1)

2022 ◽  
Vol 63 (1) ◽  
pp. 9
Author(s):  
Mikayla D. Dilbeck ◽  
Zachary R. Spahr ◽  
Rakesh Nanjappa ◽  
John R. Economides ◽  
Jonathan C. Horton

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jorge Alexander Ríos-Flórez ◽  
Ruthnaldo R. M. Lima ◽  
Paulo Leonardo A. G. Morais ◽  
Helder Henrique Alves de Medeiros ◽  
Jeferson Souza Cavalcante ◽  
...  

AbstractThis study was aimed at establishing the subcorticals substrates of the cognitive and visceromotor circuits of the A32 and A25 cortices of the medial prefrontal cortex and their projections and interactions with subcortical complexes in the common marmoset monkey (Callithrix jacchus). The study was primarily restricted to the nuclei of the diencephalon and amygdala. The common marmoset is a neotropical primate of the new world, and the absence of telencephalic gyrus favors the mapping of neuronal fibers. The biotinylated dextran amine was employed as an anterograde tracer. There was an evident pattern of rostrocaudal distribution of fibers within the subcortical nuclei, with medial orientation. Considering this distribution, fibers originating from the A25 cortex were found to be more clustered in the diencephalon and amygdala than those originating in the A32 cortex. Most areas of the amygdala received fibers from both cortices. In the diencephalon, all regions received projections from the A32, while the A25 fibers were restricted to the thalamus, hypothalamus, and epithalamus at different densities. Precise deposits of neuronal tracers provided here may significantly contribute to expand our understanding of specific connectivity among the medial prefrontal cortex with limbic regions and diencephalic areas, key elements to the viscerocognitive process.


2021 ◽  
Author(s):  
Pierce Boyne ◽  
Oluwole O Awosika ◽  
Yu Luo

The corticoreticular pathway (CRP) has been implicated as an important mediator of motor recovery and rehabilitation after central nervous system damage. However, its origins, trajectory and laterality are not well understood. This study mapped the mouse CRP in comparison with the corticospinal tract (CST). We systematically searched the Allen Mouse Brain Connectivity Atlas (© 2011 Allen Institute for Brain Science) for experiments that used anterograde tracer injections into the right isocortex in mice. For each eligible experiment (N=607), CRP and CST projection strength were quantified by the tracer volume reaching the reticular formation motor nuclei (RFmotor) and pyramids respectively. Tracer density in each brain voxel was also correlated with RFmotor versus pyramids projection strength to explore the relative trajectories of the CRP and CST. We found significant CRP projections originating from the primary and secondary motor cortices, anterior cingulate, primary somatosensory cortex and medial prefrontal cortex. Compared with the CST, the CRP had stronger projections from each region except the primary somatosensory cortex. Ipsilateral projections were stronger than contralateral for both tracts (above the pyramidal decussation), but the CRP projected more bilaterally than the CST. The estimated CRP trajectory was anteromedial to the CST in the internal capsule and dorsal to the CST in the brainstem. Our findings reveal a widespread distribution of CRP origins and confirm strong bilateral CRP projections, theoretically increasing the potential for partial sparing after brain lesions and contralesional compensation after unilateral injury.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jiayan Liu ◽  
Tetsuhiko Kashima ◽  
Shota Morikawa ◽  
Asako Noguchi ◽  
Yuji Ikegaya ◽  
...  

The presubiculum, a subarea of the parahippocampal region, plays a critical role in spatial navigation and spatial representation. An outstanding aspect of presubicular spatial codes is head-direction selectivity of the firing of excitatory neurons, called head-direction cells. Head-direction selectivity emerges before eye-opening in rodents and is maintained in adulthood through neurophysiological interactions between excitatory and inhibitory neurons. Although the presubiculum has been physiologically profiled in terms of spatial representation during development, the histological characteristics of the developing presubiculum are poorly understood. We found that the expression of vesicular glutamate transporter 2 (VGluT2) could be used to delimit the superficial layers of the presubiculum, which was identified using an anterograde tracer injected into the anterior thalamic nucleus (ATN). Thus, we immunostained slices from mice ranging in age from neonates to adults using an antibody against VGluT2 to evaluate the VGluT2-positive area, which was identified as the superficial layers of the presubiculum, during development. We also immunostained the slices using antibodies against parvalbumin (PV) and somatostatin (SOM) and found that in the presubicular superficial layers, PV-positive neurons progressively increased in number during development, whereas SOM-positive neurons exhibited no increasing trend. In addition, we observed repeating patch structures in presubicular layer III from postnatal days 12. The abundant expression of VGluT2 suggests that the presubicular superficial layers are regulated primarily by VGluT2-mediated excitatory neurotransmission. Moreover, developmental changes in the densities of PV- and SOM-positive interneurons and the emergence of the VGluT2-positive patch structures during adolescence may be associated with the functional development of spatial codes in the superficial layers of the presubiculum.


2021 ◽  
Vol 38 ◽  
Author(s):  
Martin O. Bohlen ◽  
Paul D. Gamlin ◽  
Susan Warren ◽  
Paul J. May

Abstract Since most gaze shifts are to targets that lie at a different distance from the viewer than the current target, gaze changes commonly require a change in the angle between the eyes. As part of this response, lens curvature must also be adjusted with respect to target distance by the ciliary muscle. It has been suggested that projections by the cerebellar fastigial and posterior interposed nuclei to the supraoculomotor area (SOA), which lies immediately dorsal to the oculomotor nucleus and contains near response neurons, support this behavior. However, the SOA also contains motoneurons that supply multiply innervated muscle fibers (MIFs) and the dendrites of levator palpebrae superioris motoneurons. To better determine the targets of the fastigial nucleus in the SOA, we placed an anterograde tracer into this cerebellar nucleus in Macaca fascicularis monkeys and a retrograde tracer into their contralateral medial rectus, superior rectus, and levator palpebrae muscles. We only observed close associations between anterogradely labeled boutons and the dendrites of medial rectus MIF and levator palpebrae motoneurons. However, relatively few of these associations were present, suggesting these are not the main cerebellar targets. In contrast, labeled boutons in SOA, and in the adjacent central mesencephalic reticular formation (cMRF), densely innervated a subpopulation of neurons. Based on their location, these cells may represent premotor near response neurons that supply medial rectus and preganglionic Edinger–Westphal motoneurons. We also identified lens accommodation-related cerebellar afferent neurons via retrograde trans-synaptic transport of the N2c rabies virus from the ciliary muscle. They were found bilaterally in the fastigial and posterior interposed nuclei, in a distribution which mirrored that of neurons retrogradely labeled from the SOA and cMRF. Our results suggest these cerebellar neurons coordinate elements of the near response during symmetric vergence and disjunctive saccades by targeting cMRF and SOA premotor neurons.


2020 ◽  
Author(s):  
Peng Su ◽  
Min Ying ◽  
Jinjin Xia ◽  
Yingli Li ◽  
Yang Wu ◽  
...  

AbstractNeuroanatomical tracing technology is fundamental for unraveling the complex network of brain connectome. Tracing tools that could spread between neurons are urgently needed, especially the rigorous trans-monosynaptic anterograde tracer is still lacking. HSV1 strain H129 was proved to be an anterograde tracer and has been used to trace neuronal networks in several reports. However, H129 has a serious defect that it was demonstrated to infect neurons via axon terminals. Thus, when using H129 to dissect output neural circuit, its terminal take up capacity should be carefully considered. Here, we report a recombinant H129 that carrying the anti-Her2 scFv in glycoprotein D to target genetically defined neurons. With the usage of helper virus complementarily expressing Her2 and gD, we can realize the elucidation of direct projection regions of either a given brain nucleus or a specific neuron type. The retargeted H129 system complements the current neural circuit tracer arsenal, which provides a rigorous and practical anterograde trans-monosynaptic tool.


2019 ◽  
Vol 100 ◽  
pp. 101662 ◽  
Author(s):  
Peng Su ◽  
Huadong Wang ◽  
Jinjin Xia ◽  
Xin Zhong ◽  
Liang Hu ◽  
...  

2019 ◽  
Author(s):  
Alexander Woodward ◽  
Rui Gong ◽  
Hiroshi Abe ◽  
Ken Nakae ◽  
Junichi Hata ◽  
...  

AbstractWe describe our connectomics pipeline for processing tracer injection data for the brain of the common marmoset (Callithrix jacchus). Brain sections were imaged using a batch slide scanner (NanoZoomer 2.0-HT) and we used artificial intelligence to precisely segment the anterograde tracer signal from the background in the fluorescence images. The shape of each brain was reconstructed by reference to a block-face and all data was mapped into a common 3D brain space with atlas and 2D cortical flat map. To overcome the effect of using a single template atlas to specify cortical boundaries, each brain was cytoarchitectonically annotated and used for making an individual 3D atlas. Registration between the individual and common brain cortical boundaries in the flat map space was done to absorb the variation of each brain and precisely map all tracer injection data into one cortical brain space. We describe the methodology of our pipeline and analyze tracer segmentation and brain registration accuracy. Results show our pipeline can successfully process and normalize tracer injection experiments into a common space, making it suitable for large-scale connectomics studies with a focus on the cerebral cortex.


2018 ◽  
Author(s):  
Karoline Hovde ◽  
Michele Gianatti ◽  
Menno P. Witter ◽  
Jonathan R. Whitlock

ABSTRACTThe posterior parietal cortex (PPC) is a multifaceted region of cortex, contributing to several cognitive processes including sensorimotor integration and spatial navigation. Although recent years have seen a considerable rise in the use of rodents, particularly mice, to investigate PPC and related networks, a coherent anatomical definition of PPC in the mouse is still lacking. To address this, we delineated the mouse PPC using cyto- and chemoarchitectural markers from Nissl-, parvalbumin- and muscarinic acetylcholine receptor M2-staining. Additionally, we performed bilateral triple anterograde tracer injections in primary visual cortex (V1) and prepared flattened tangential sections from one hemisphere and coronal sections from the other, allowing us to co-register the cytoarchitectural features of PPC with V1 projections. In charting the location of extrastriate areas and the architectural features of PPC in the context of each other, we reconcile different, widely used conventions for demarcating PPC in the mouse. Furthermore, triple anterograde tracer injections in PPC showed strong projections to associative thalamic nuclei as well as higher visual areas, orbitofrontal, cingulate and secondary motor cortices. Retrograde circuit mapping with rabies virus further showed that all cortical connections were reciprocal. These combined approaches provide a coherent definition of mouse PPC that incorporates laminar architecture, extrastriate projections, thalamic, and cortico-cortical connections.


2018 ◽  
Author(s):  
Suyi Wang ◽  
Xu Li ◽  
Partha Mitra ◽  
Yusu Wang

AbstractNeuroscientific data analysis has classically involved methods for statistical signal and image processing, drawing on linear algebra and stochastic process theory. However, digitized neuroanatomical data sets containing labelled neurons, either individually or in groups labelled by tracer injections, do not fully fit into this classical framework. The tree-like shapes of neurons cannot mathematically be adequately described as points in a vector space (eg, the subtraction of two neuronal shapes is not a meaningful operation). There is therefore a need for new approaches. Methods from computational topology and geometry are naturally suited to the analysis of neuronal shapes. Here we introduce methods from Discrete Morse Theory to extract tree-skeletons of individual neurons from volumetric brain image data, or to summarize collections of neurons labelled by localized anterograde tracer injections. Since individual neurons are topologically trees, it is sensible to summarize the collection of neurons labelled by a localized anterograde tracer injection using a consensus tree-shape. This consensus tree provides a richer information summary than the regional or voxel-based “connectivity matrix” approach that has previously been used in the literature.The algorithmic procedure includes an initial pre-processing step to extract a density field from the raw volumetric image data, followed by initial skeleton extraction from the density field using a discrete version of a 1-(un)stable manifold of the density field. Heuristically, if the density field is regarded as a mountainous landscape, then the 1-(un)stable manifold follows the “mountain ridges” connecting the maxima of the density field. We then simplify this skeletongraph into a tree using a shortest-path approach and methods derived from persistent homology. The advantage of this approach is that it uses global information about the density field and is therefore robust to local fluctuations and non-uniformly distributed input signals. To be able to handle large data sets, we use a divide-and-conquer approach. The resulting software DiMorSC is available on Github[40]. To the best of our knowledge this is currently the only publicly available code for the extraction of the 1-unstable manifold from an arbitrary simplicial complex using the Discrete Morse approach.


Sign in / Sign up

Export Citation Format

Share Document