scholarly journals Functional Characterization of DNA-binding Domains of the Subunits of the Heterodimeric Aryl Hydrocarbon Receptor Complex Imputing Novel and Canonical Basic Helix-Loop-Helix Protein-DNA Interactions

1996 ◽  
Vol 271 (15) ◽  
pp. 8843-8850 ◽  
Author(s):  
Steven G. Bacsi ◽  
Oliver Hankinson
2008 ◽  
Vol 284 (2) ◽  
pp. 1057-1063 ◽  
Author(s):  
Norihisa Ooe ◽  
Kozo Motonaga ◽  
Kentaro Kobayashi ◽  
Koichi Saito ◽  
Hideo Kaneko

2016 ◽  
Vol 15s2 ◽  
pp. CIN.S39366 ◽  
Author(s):  
Ka-Chun Wong

Protein–DNA interactions are involved in different cancer pathways. In particular, the DNA-binding domains of proteins can determine where and how gene regulatory regions are bound in different cell lines at different stages. Therefore, it is essential to develop a method to predict and locate the core residues on cancer-related DNA-binding domains. In this study, we propose a computational method to predict and locate core residues on DNA-binding domains. In particular, we have selected the cancer-related DNA-binding domains for in-depth studies, namely, winged Helix Turn Helix family, homeodomain family, and basic Helix-Loop-Helix family. The results demonstrate that the proposed method can predict the core residues involved in protein–DNA interactions, as verified by the existing structural data. Given its good performance, various aspects of the method are discussed and explored: for instance, different uses of prediction algorithm, different protein domains, and hotspot threshold setting.


2010 ◽  
Vol 30 (22) ◽  
pp. 5325-5334 ◽  
Author(s):  
Meghan T. Mitchell ◽  
Jasmine S. Smith ◽  
Mark Mason ◽  
Sandy Harper ◽  
David W. Speicher ◽  
...  

ABSTRACT The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.


1993 ◽  
Vol 13 (12) ◽  
pp. 7257-7266 ◽  
Author(s):  
C Carriere ◽  
S Plaza ◽  
P Martin ◽  
B Quatannens ◽  
M Bailly ◽  
...  

After differential screening of a cDNA library constructed from quail neuroretina cells (QNR) infected with the v-myc-containing avian retrovirus MC29, we have isolated a cDNA clone, Pax-QNR, homologous to the murine Pax-6, which is mutated in the autosomal dominant mutation small eye of mice and in the disorder aniridia in humans. Here we report the characterization of the Pax-QNR proteins expressed in the avian neuroretina. From bacterially expressed Pax-QNR peptides, we obtained rabbit antisera directed against different domains of the protein: paired domain (serum 11), domain between the paired domain and homeodomain (serum 12), homeodomain (serum 13), and carboxyl-terminal part (serum 14). Sera 12, 13, and 14 were able to specifically recognize five proteins (48, 46, 43, 33, and 32 kDa) in the neuroretina. In contrast to proteins of 48, 46, and 43 kDa, proteins of 33 and 32 kDa were not recognized by the paired antiserum (serum 11). Paired-less and paired-containing proteins exhibited the same half-life (6 h) and were phosphorylated mostly on serine residues. Immunoprecipitations performed with subcellular fractions of neuroretinas showed that the paired-containing proteins were located in the nucleus, whereas the 33- and 32-kDa proteins were found essentially in the cytoplasmic compartment. However, immunofluorescence experiments performed after transient transfections showed that p46 and p33/32 were also located in vivo into the nucleus. Thus, the Pax-QNR/Pax-6 gene can produce proteins with two DNA-binding domains as well as proteins containing only the DNA-binding homeodomain.


Sign in / Sign up

Export Citation Format

Share Document