Isolation and characterization of R2R3-MYB and basic helix–loop–helix (bHLH) transcription factors involved in anthocyanin biosynthesis in tulip tepals

2020 ◽  
Vol 42 (3) ◽  
Author(s):  
Yuan Yuan ◽  
Yimin Shi ◽  
Dongqin Tang
2008 ◽  
Vol 49 (12) ◽  
pp. 1818-1829 ◽  
Author(s):  
Takashi Nakatsuka ◽  
Katia Sanae Haruta ◽  
Chetsadaporn Pitaksutheepong ◽  
Yoshiko Abe ◽  
Yuko Kakizaki ◽  
...  

2000 ◽  
Vol 20 (13) ◽  
pp. 4826-4837 ◽  
Author(s):  
Gino Poulin ◽  
Mélanie Lebel ◽  
Michel Chamberland ◽  
Francois W. Paradis ◽  
Jacques Drouin

ABSTRACT Homeoproteins and basic helix-loop-helix (bHLH) transcription factors are known for their critical role in development and cellular differentiation. The pituitary pro-opiomelanocortin (POMC) gene is a target for factors of both families. Indeed, pituitary-specific transcription of POMC depends on the action of the homeodomain-containing transcription factor Pitx1 and of bHLH heterodimers containing NeuroD1. We now show lineage-restricted expression of NeuroD1 in pituitary corticotroph cells and a direct physical interaction between bHLH heterodimers and Pitx1 that results in transcriptional synergism. The interaction between the bHLH and homeodomains is restricted to ubiquitous (class A) bHLH and to the Pitx subfamily. Since bHLH heterodimers interact with Pitx factors through their ubiquitous moiety, this mechanism may be implicated in other developmental processes involving bHLH factors, such as neurogenesis and myogenesis.


2020 ◽  
Author(s):  
Gwen Swinnen ◽  
Margaux De Meyer ◽  
Jacob Pollier ◽  
Francisco Javier Molina-Hidalgo ◽  
Evi Ceulemans ◽  
...  

ABSTRACTSpecialized metabolites are produced by plants to fend off biotic enemies. Across the plant kingdom, the biosynthesis of these defense compounds is promoted by jasmonate signaling in which clade IIIe basic helix-loop-helix (bHLH) transcription factors take on a central role. Tomato (Solanum lycopersicum) produces cholesterol-derived steroidal glycoalkaloids (SGAs) that act as phytoanticipins against a broad variety of herbivores and pathogens. The biosynthesis of SGAs from cholesterol occurs constitutively in tomato plants and can be further stimulated by jasmonates. Here, we demonstrate that the two tomato clade IIIe bHLH transcription factors, MYC1 and MYC2, redundantly and specifically control the constitutive biosynthesis of SGAs. Double myc1 myc2 loss-of-function tomato hairy roots displayed suppressed constitutive expression of cholesterol and SGA biosynthesis genes, and consequently severely reduced levels of the main tomato SGAs α-tomatine and dehydrotomatine. In contrast, basal expression of genes involved in canonical jasmonate signaling or in the biosynthesis of highly jasmonate-inducible phenylpropanoid-polyamine conjugates was not affected. Furthermore, CRISPR-Cas9(VQR)-mediated genome editing of a specific cis-regulatory element, targeted by MYC1/2, in the promoter of a cholesterol biosynthesis gene led to decreased constitutive expression of this gene, but did not affect its jasmonate inducibility. Our results demonstrate that clade IIIe bHLH transcriptional regulators might have evolved to regulate the biosynthesis of specific constitutively accumulating specialized metabolites independent of jasmonate signaling.One sentence summaryThe clade IIIe basic helix-loop-helix transcription factors MYC1 and MYC2 control the constitutive biosynthesis of tomato steroidal glycoalkaloids and might do so independently of jasmonate signaling.


2007 ◽  
Vol 6 (4) ◽  
pp. 734-743 ◽  
Author(s):  
Setsu Endoh-Yamagami ◽  
Kiyoshi Hirakawa ◽  
Daisuke Morioka ◽  
Ryouichi Fukuda ◽  
Akinori Ohta

ABSTRACT The expression of the ALK1 gene, which encodes cytochrome P450, catalyzing the first step of alkane oxidation in the alkane-assimilating yeast Yarrowia lipolytica, is highly regulated and can be induced by alkanes. Previously, we identified a cis-acting element (alkane-responsive element 1 [ARE1]) in the ALK1 promoter. We showed that a basic helix-loop-helix (bHLH) protein, Yas1p, binds to ARE1 in vivo and mediates alkane-dependent transcription induction. Yas1p, however, does not bind to ARE1 by itself in vitro, suggesting that Yas1p requires another bHLH protein partner for its DNA binding, as many bHLH transcription factors function by forming heterodimers. To identify such a binding partner of Yas1p, here we screened open reading frames encoding proteins with the bHLH motif from the Y. lipolytica genome database and identified the YAS2 gene. The deletion of the YAS2 gene abolished the alkane-responsive induction of ALK1 transcription and the growth of the yeast on alkanes. We revealed that Yas2p has transactivation activity. Furthermore, Yas1p and Yas2p formed a protein complex that was required for the binding of these proteins to ARE1. These findings allow us to postulate a model in which bHLH transcription factors Yas1p and Yas2p form a heterocomplex and mediate the transcription induction in response to alkanes.


Sign in / Sign up

Export Citation Format

Share Document