scholarly journals Contribution of Proline Residues in the Membrane-spanning Domains of Cystic Fibrosis Transmembrane Conductance Regulator to Chloride Channel Function

1996 ◽  
Vol 271 (25) ◽  
pp. 14995-15001 ◽  
Author(s):  
David N. Sheppard ◽  
Sue M. Travis ◽  
Hiroshi Ishihara ◽  
Michael J. Welsh
2008 ◽  
Vol 19 (11) ◽  
pp. 4570-4579 ◽  
Author(s):  
Meredith F. N. Rosser ◽  
Diane E. Grove ◽  
Liling Chen ◽  
Douglas M. Cyr

Cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic membrane protein that functions as a Cl− channel and consists of two membrane spanning domains (MSDs), two cytosolic nucleotide binding domains (NBDs), and a cytosolic regulatory domain. Cytosolic 70-kDa heat shock protein (Hsp70), and endoplasmic reticulum-localized calnexin are chaperones that facilitate CFTR biogenesis. Hsp70 functions in both the cotranslational folding and posttranslational degradation of CFTR. Yet, the mechanism for calnexin action in folding and quality control of CFTR is not clear. Investigation of this question revealed that calnexin is not essential for CFTR or CFTRΔF508 degradation. We identified a dependence on calnexin for proper assembly of CFTR's membrane spanning domains. Interestingly, efficient folding of NBD2 was also found to be dependent upon calnexin binding to CFTR. Furthermore, we identified folding defects caused by deletion of F508 that occurred before and after the calnexin-dependent association of MSD1 and MSD2. Early folding defects are evident upon translation of the NBD1 and R-domain and are sensed by the RMA-1 ubiquitin ligase complex.


2003 ◽  
Vol 375 (3) ◽  
pp. 633-641 ◽  
Author(s):  
Mohabir RAMJEESINGH ◽  
Francisca UGWU ◽  
Canhui LI ◽  
Sonja DHANI ◽  
Ling Jun HUAN ◽  
...  

Structural information is required to define the molecular basis for chloride conduction through CFTR (cystic fibrosis transmembrane conductance regulator). Towards this goal, we expressed MSD2, the second of the two MSDs (membrane-spanning domains) of CFTR, encompassing residues 857–1158 in Sf9 cells using the baculovirus system. In Sf9 plasma membranes, MSD2 migrates as expected for a dimer in non-dissociative PAGE, and confers the appearance of an anion permeation pathway suggesting that dimeric MSD2 mediates anion flux. To assess directly the function and quaternary structure of MSD2, we purified it from Sf9 cells by virtue of its polyhistidine tag and nickel affinity. Reconstitution of MSD2 into liposomes conferred a 4,4′-di-isothiocyanostilbene-2,2′-disulphonate-inhibitable, chloride-selective electrodiffusion pathway. Further, this activity is probably mediated directly by MSD2 as reaction of its single cysteine residue (Cys866) with the thiol modifying reagent, Nα(3-maleimidylpropionyl)biocytin, inhibited chloride flux. Only MSD2 dimers were labelled by Nα(3-maleimidylpropionyl)biocytin, supporting the idea that only dimeric MSD2 can mediate anion flux. As a further test of this hypothesis, we conducted a second purification procedure, wherein purified dimeric and monomeric MSD2 proteins were reconstituted separately. Only proteoliposomes containing stable MSD2 dimers mediated chloride electrodiffusion, providing direct evidence that dimeric MSD2 mediates chloride channel function. In summary, we have shown that the second membrane domain of CFTR can be purified and functionally reconstituted as a chloride channel, providing a tool for probing the structural basis of chloride conduction through CFTR.


2014 ◽  
Vol 92 (5) ◽  
pp. 390-396 ◽  
Author(s):  
Steven D. Broadbent ◽  
Wuyang Wang ◽  
Paul Linsdell

Activity of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is thought to be controlled by cytoplasmic factors. However, recent evidence has shown that overall channel activity is also influenced by extracellular anions that interact directly with the extracellular loops (ECLs) of the CFTR protein. Very little is known about the structure of the ECLs or how substances interacting with these ECLs might affect CFTR function. We used patch-clamp recording to investigate the accessibility of cysteine-reactive reagents to cysteines introduced throughout ECL1 and 2 key sites in ECL4. Furthermore, interactions between ECL1 and ECL4 were investigated by the formation of disulfide crosslinks between cysteines introduced into these 2 regions. Crosslinks could be formed between R899C (in ECL4) and a number of sites in ECL1 in a manner that was dependent on channel activity, suggesting that the relative orientation of these 2 loops changes on activation. Formation of these crosslinks inhibited channel function, suggesting that relative movement of these ECLs is important to normal channel function. Implications of these findings for the effects of mutations in the ECLs that are associated with cystic fibrosis and interactions with extracellular substances that influence channel activity are discussed.


Sign in / Sign up

Export Citation Format

Share Document