intracellular membranes
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 18)

H-INDEX

46
(FIVE YEARS 3)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
Anna V. Bulankina ◽  
Rebecca M. Richter ◽  
Christoph Welsch

Positive-strand RNA viruses such as hepatitis C virus (HCV) hijack key factors of lipid metabolism of infected cells and extensively modify intracellular membranes to support the viral lifecycle. While lipid metabolism plays key roles in viral particle assembly and maturation, viral RNA synthesis is closely linked to the remodeling of intracellular membranes. The formation of viral replication factories requires a number of interactions between virus proteins and host factors including lipids. The structure–function relationship of those proteins is influenced by their lipid environments and lipids that selectively modulate protein function. Here, we review our current understanding on the roles of phospholipids in HCV replication and of lipid–protein interactions in the structure–function relationship of the NS5A protein. NS5A is a key factor in membrane remodeling in HCV-infected cells and is known to recruit phosphatidylinositol 4-kinase III alpha to generate phosphatidylinositol 4-phosphate at the sites of replication. The dynamic interplay between lipids and viral proteins within intracellular membranes is likely key towards understanding basic mechanisms in the pathobiology of virus diseases, the mode of action of specific antiviral agents and related drug resistance mechanisms.


2021 ◽  
Vol 17 (10) ◽  
pp. e1009726
Author(s):  
Dorota Kmiec ◽  
María José Lista ◽  
Mattia Ficarelli ◽  
Chad M. Swanson ◽  
Stuart JD Neil

The zinc finger antiviral protein (ZAP) is a broad inhibitor of virus replication. Its best-characterized function is to bind CpG dinucleotides present in viral RNAs and, through the recruitment of TRIM25, KHNYN and other cofactors, target them for degradation or prevent their translation. The long and short isoforms of ZAP (ZAP-L and ZAP-S) have different intracellular localization and it is unclear how this regulates their antiviral activity against viruses with different sites of replication. Using ZAP-sensitive and ZAP-insensitive human immunodeficiency virus type I (HIV-1), which transcribe the viral RNA in the nucleus and assemble virions at the plasma membrane, we show that the catalytically inactive poly-ADP-ribose polymerase (PARP) domain in ZAP-L is essential for CpG-specific viral restriction. Mutation of a crucial cysteine in the C-terminal CaaX box that mediates S-farnesylation and, to a lesser extent, the residues in place of the catalytic site triad within the PARP domain, disrupted the activity of ZAP-L. Addition of the CaaX box to ZAP-S partly restored antiviral activity, explaining why ZAP-S lacks antiviral activity for CpG-enriched HIV-1 despite conservation of the RNA-binding domain. Confocal microscopy confirmed the CaaX motif mediated localization of ZAP-L to vesicular structures and enhanced physical association with intracellular membranes. Importantly, the PARP domain and CaaX box together jointly modulate the interaction between ZAP-L and its cofactors TRIM25 and KHNYN, implying that its proper subcellular localisation is required to establish an antiviral complex. The essential contribution of the PARP domain and CaaX box to ZAP-L antiviral activity was further confirmed by inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, which replicates in double-membrane vesicles derived from the endoplasmic reticulum. Thus, compartmentalization of ZAP-L on intracellular membranes provides an essential effector function in ZAP-L-mediated antiviral activity against divergent viruses with different subcellular replication sites.


2021 ◽  
Author(s):  
Ken Komatsu ◽  
Nobumitsu Sasaki ◽  
Tetsuya Yoshida ◽  
Katsuhiro Suzuki ◽  
Yuki Masujima ◽  
...  

Characterized positive-strand RNA viruses replicate in association with intracellular membranes. Regarding viruses in the genus Potexvirus , the mechanism by which their RNA-dependent RNA polymerase (replicase) associates with membranes is understudied. Here, by membrane flotation analyses of the replicase of plantago asiatica mosaic potexvirus (PlAMV), we identified a region in the methyltransferase (MET) domain as a membrane association determinant. An amphipathic α-helix was predicted downstream from the core region of the MET domain and hydrophobic amino acid residues were conserved in the helical sequences in replicases of other potexviruses. NMR analysis confirmed the amphipathic α-helical configuration and unveiled a kink caused by a highly conserved proline residue in the α-helix. Substitution of this proline residue and other hydrophobic and charged residues in the amphipathic α-helix abolished PlAMV replication. Ectopic expression of a GFP-fusion with the entire MET domain resulted in the formation of a large perinuclear complex, where virus replicase and RNA co-located during virus infection. Except for the proline substitution, the amino acid substitutions in the α-helix that abolished virus replication also prevented the formation of the large perinuclear complex by the respective GFP-MET fusion. Small intracellular punctate structures were observed for all GFP-MET fusions and in vitro high molecular weight complexes were formed by both replication-competent and -incompetent viral replicons, and thus were not sufficient for replication competence. We discuss the roles of the potexvirus-specific, proline-kinked amphipathic helical structure in virus replication and intracellular large complex and punctate structure formation. IMPORTANCE RNA viruses characteristically associate with intracellular membranes during replication. Although virus replicases are assumed to possess membrane-targeting properties, their membrane association domains generally remain unidentified or poorly characterized. Here, we identified a proline-kinked amphipathic α-helix structure downstream from the methyltransferase core domain of PlAMV replicase as a membrane association determinant. This helical sequence, which includes the proline residue, was conserved among potexviruses and related viruses in the order Tymovirales . Substitution of the proline residue but not the other residues necessary for replication allowed formation of a large perinuclear complex within cells resembling those formed by PlAMV replicase and RNA during virus replication. Our results demonstrate the role of the amphipathic α-helix in PlAMV replicase in a perinuclear complex formation and virus replication and that a perinuclear complex formation by the replicase alone will not necessarily indicate successful virus replication.


2021 ◽  
Author(s):  
Dorota Kmiec ◽  
Maria Jose Lista ◽  
Mattia Ficarelli ◽  
Chad Swanson ◽  
Stuart J.D. Neil

The zinc finger antiviral protein (ZAP) is a broad inhibitor of virus replication. Its best-characterized function is to bind CpG dinucleotides present in viral RNA and, through the recruitment of TRIM25, KHNYN and other cellular RNA degradation machinery, target them for degradation or prevent their translation. ZAP’s activity requires the N-terminal RNA binding domain that selectively binds CpG-containing RNA. However, much less is known about the functional contribution of the remaining domains. Using ZAP-sensitive and ZAP-insensitive human immunodeficiency virus type I (HIV-1), we show that the catalytically inactive   poly-ADP-ribose polymerase (PARP) domain of the long ZAP isoform (ZAP-L) is essential for CpG-specific viral restriction. Mutation of a crucial cysteine in the C-terminal CaaX box that mediates S-farnesylation and, to a lesser extent, the inactive catalytic site triad within the PARP domain, disrupted the activity of ZAP-L. Addition of the CaaX box to ZAP-S partly restored antiviral activity, explaining why ZAP-S lacks CpG-dependent antiviral activity despite conservation of the RNA-binding domain. Confocal microscopy confirmed the CaaX motif mediated localization of ZAP-L to vesicular structures and enhanced physical association with intracellular membranes. Importantly, the PARP domain and CaaX box together modulate the interaction between ZAP-L and its cofactors TRIM25 and KHNYN, implying that its proper subcellular localisation is required to establish an antiviral complex. The essential contribution of the PARP domain and CaaX box to ZAP-L’s CpG-directed antiviral activity was further confirmed by inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. Thus, compartmentalization of ZAP-L on intracellular membranes provides an essential effector function in the ZAP-L-mediated antiviral activity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Victoria A. Trinkaus ◽  
Irene Riera-Tur ◽  
Antonio Martínez-Sánchez ◽  
Felix J. B. Bäuerlein ◽  
Qiang Guo ◽  
...  

AbstractThe molecular architecture of α-Synuclein (α-Syn) inclusions, pathognomonic of various neurodegenerative disorders, remains unclear. α-Syn inclusions were long thought to consist mainly of α-Syn fibrils, but recent reports pointed to intracellular membranes as the major inclusion component. Here, we use cryo-electron tomography (cryo-ET) to image neuronal α-Syn inclusions in situ at molecular resolution. We show that inclusions seeded by α-Syn aggregates produced recombinantly or purified from patient brain consist of α-Syn fibrils crisscrossing a variety of cellular organelles. Using gold-labeled seeds, we find that aggregate seeding is predominantly mediated by small α-Syn fibrils, from which cytoplasmic fibrils grow unidirectionally. Detailed analysis of membrane interactions revealed that α-Syn fibrils do not contact membranes directly, and that α-Syn does not drive membrane clustering. Altogether, we conclusively demonstrate that neuronal α-Syn inclusions consist of α-Syn fibrils intermixed with membranous organelles, and illuminate the mechanism of aggregate seeding and cellular interaction.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Jorge Royes ◽  
Valérie Biou ◽  
Nathalie Dautin ◽  
Christophe Tribet ◽  
Bruno Miroux

2020 ◽  
Vol 133 (12) ◽  
pp. jcs241034
Author(s):  
Guillaume Bastin ◽  
Kaveesh Dissanayake ◽  
Dylan Langburt ◽  
Alex L. C. Tam ◽  
Shin-Haw Lee ◽  
...  

2020 ◽  
Author(s):  
P. Ryzhov ◽  
Y. Tian ◽  
Y. Yao ◽  
A. A. Bobkov ◽  
W. Im ◽  
...  

ABSTRACTBcl-xL is a major inhibitor of apoptosis, a fundamental homeostatic process of programmed cell death that is highly conserved across evolution. Because it plays prominent roles in cancer, Bcl-xL is a major target for anti-cancer therapy and for studies aimed at understanding its structure and activity. While Bcl-xL is active primarily at intracellular membranes, most studies have focused on soluble forms of the protein lacking both the membrane-anchoring C-terminal tail and the intrinsically disordered loop, and this has resulted in a fragmented view of the protein’s biological activity. Here we describe how these segments affect the protein’s conformation and ligand binding activity in both its soluble and membrane-anchored states. The combined data from nuclear magnetic resonance (NMR) spectroscopy, molecular dynamics (MD) simulations, and isothermal titration calorimetry (ITC) provide information about the molecular basis for the protein’s functionality and a view of its complex molecular mechanisms.SIGNIFICANCEThe human protein Bcl-xL is a key regulator of programmed cell death in health and disease. Structural studies, important for understating the molecular basis for its functions, have advanced primarily by deleting both the long disordered loop that regulates its activity and the C-terminal tail that anchors the protein to intracellular membranes Here we describe the preparation and conformations of full-length Bcl-xL in both its water-soluble and membrane-anchored states. The study provides new biophysical insights about Bcl-xL and its greater Bcl-2 protein family.


Author(s):  
Jorge Royes Mir ◽  
Valérie Biou ◽  
Nathalie Dautin ◽  
Christophe Tribet ◽  
Bruno Miroux

Membrane remodeling and phospholipid biosynthesis are normally tightly regulated to maintain the shape and function of cells. Indeed, different physiological mechanisms ensure a precise coordination between de novo phospholipid biosynthesis and modulation of membrane morphology. Interestingly, the overproduction of certain membrane proteins hijack these regulation networks, leading to the formation of impressive intracellular membrane structures in both prokaryotic and eukaryotic cells. The proteins triggering membrane proliferation share two major common features: 1) they promote the formation of highly curved membrane domains and 2) they lead to an enrichment in anionic, cone-shaped phospholipids (cardiolipin or phosphatidic acid) in the newly formed membranes. Taking into account the available examples of membrane proliferation upon protein overproduction, together with the latest biochemical, biophysical and structural data, we explore the relationship between protein synthesis and membrane biogenesis. We propose a mechanism for the formation of these non-physiological intracellular membranes that shares similarities with natural inner membrane structures found in α-proteobacteria, mitochondria and some viruses-infected cells, pointing towards a conserved feature through evolution. We hope that the information discussed in this review will give a better grasp of the biophysical mechanisms behind physiological and induced intracellular membrane proliferation, inspiring new biotechnological applications.


Sign in / Sign up

Export Citation Format

Share Document