r region
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 14)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ahmed Ibrahim

Abstract To inhibit HIV replication and infection, we have designed novel linear single stranded modified antisense nucleic acid oligonucleotides ending with or without chain terminating bases (Which resemble the shape of the comb). They were targeting specifically the HIV-1 clone pNL4-3 strong promoter pre PBS region to stop cDNA synthesis within or before the R region, preventing the viral reverse transcriptase (RT) jumping to the 3' end and continue copying the virus. The main advantages of our comb shaped oligonucleotides are their specificity and extreme protection against resistance by known viral mutations. Promising results were obtained for two 15-mer compounds at one tenth azidothymidine concentration. As a result we claim that when adapted properly, the comb shaped antivirals can be used to target the genomic RNA of a number of serious viruses such as for example Ebola, SARS-CoV-2, Influenza, Dengue, hepatitis C, Chikungunya and Zika as they are all using polymerases to copy their genomic RNA1-8. Their genomic RNA could be destroyed through the human or viral endonucleases instead of the viral RT RNAseH site when their polymerases are stopped at specific sites.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2529
Author(s):  
Monika Olech ◽  
Jacek Kuźmak

Small ruminant lentiviruses (SRLVs) are a group of highly divergent viruses responsible for global infection in sheep and goats. In a previous study we showed that SRLV strains found in mixed flocks in Poland belonged to subtype A13 and A18, but this study was restricted only to the few flocks from Małopolska region. The present work aimed at extending earlier findings with the analysis of SRLVs in mixed flocks including larger numbers of animals and flocks from different part of Poland. On the basis of gag and env sequences, Polish SRLVs were assigned to the subtypes B2, A5, A12, and A17. Furthermore, the existence of a new subtypes, tentatively designed as A23 and A24, were described for the first time. Subtypes A5 and A17 were only found in goats, subtype A24 has been detected only in sheep while subtypes A12, A23, and B2 have been found in both sheep and goats. Co-infection with strains belonging to different subtypes was evidenced in three sheep and two goats originating from two flocks. Furthermore, three putative recombination events were identified within gag and env SRLVs sequences derived from three sheep. Amino acid (aa) sequences of immunodominant epitopes in CA protein were well conserved while Major Homology Region (MHR) had more alteration showing unique mutations in sequences of subtypes A5 and A17. In contrast, aa sequences of surface glycoprotein exhibited higher variability confirming type-specific variation in the SU5 epitope. The number of potential N-linked glycosylation sites (PNGS) ranged from 3 to 6 in respective sequences and were located in different positions. The analysis of LTR sequences revealed that sequences corresponding to the TATA box, AP-4, AML-vis, and polyadenylation signal (poly A) were quite conserved, while considerable alteration was observed in AP-1 sites. Interestingly, our results revealed that all sequences belonging to subtype A17 had unique substitution T to A in the fifth position of TATA box and did not have a 11 nt deletion in the R region which was noted in other sequences from Poland. These data revealed a complex picture of SRLVs population with ovine and caprine strains belonging to group A and B. We present strong and multiple evidence of dually infected sheep and goats in mixed flocks and present evidence that these viruses can recombine in vivo.


Author(s):  
Lee-Chung Lin ◽  
Chun-Wen Cheng ◽  
Shih-Cheng Chang ◽  
Jang-Jih Lu

The von Willebrand factor binding protein in Staphylococcus lugdunensis (vWbl) comprises four major regions: the signal peptide (S), the non-repetitive (A) region, the repeat (R) region, and the wall-associated (W) region. Previous studies have demonstrated that the R region contains 10 copies of repeating sequences; however, we reveal that the copy number of repeats in the vWbl gene varies among different S. lugdunensis isolates. In this study, an epidemiological surveillance was conducted to determine whether the copy number of repeats in vWbl in different isolates of S. lugdunensis correlates with their infectivity. The number of repeats was estimated in a total of 212 isolates, consisting of 162 isolates of oxacillin-sensitive S. lugdunensis (OSSL) and 50 isolates of oxacillin-resistant S. lugdunensis (ORSL). Our data showed that 72.5% (116/162) of OSSL isolates contained 9 (25, 15.4%), 12 (43, 26.5%), or 13 (48, 29.6%) repeats, and 90% (45/50) of ORSL isolates had 9 (32, 64%) or 13 (13, 26%) repeats. In addition, 89.6% (26 of 29) of the sequence type (ST)27 strain had 12 repeats, and 86.8% (13 of 15) of the ST4 strain had 14 repeats. Twenty-seven of the 28 isolates with nine repeats were of the staphylococcal cassette chromosome mec (SCCmec) V or Vt type and belonged to ST3, and all isolates with 13 repeats were of SCCmec II type and belonged to ST6. All isolates with nine repeats had a stop codon at the 18th codon of the third repeat, suggesting that these isolates coded for nonfunctional vWbl. Further, western blot analysis confirmed that all strains translated vWbl, and only vWbl proteins coded by genes with nine repeats were exported outside the cell. These results suggest that number of vWbl repeats in S. lugdunensis have clonal specificities and may correlate with potential pathogenicity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhewei Sun ◽  
Xueya Zhang ◽  
Danying Zhou ◽  
Kexin Zhou ◽  
Qiaoling Li ◽  
...  

Coagulase-negative Staphylococcus warneri is an opportunistic pathogen that is capable of causing several infections, especially in patients with indwelling medical devices. Here, we determined the complete genome sequence of a clinical S. warneri strain isolated from the blood culture of a 1-year-old nursling patient with acute upper respiratory infection. Genome-wide phylogenetic analysis confirmed the phylogenetic relationships between S. warneri and other Staphylococcus species. Using comparative genomics, we identified three cell wall-anchored (CWA) proteins at the same locus (sdr), named SdrJ, SdrK, and SdrL, on the chromosome sequences of different S. warneri strains. Structural predictions showed that SdrJ/K/L have structural features characteristic of Sdr proteins but exceptionally contained an unusual N-terminal repeat region. However, the C-terminal repetitive (R) region of SdrJ contains a significantly larger proportion of alanine (142/338, 42.01%) than the previously reported SdrI (37.00%). Investigation of the genetic organization revealed that the sdrJ/K/L genes were always followed by one or two glycosyltransferase genes, gtfA and gtfB and were present in an ∼56 kb region bordered by a pair of 8 bp identical direct repeats, named Sw-Sdr. This region was further found to be located on a 160-kb region subtended by a pair of 160-bp direct repeats along with other virulence genes and resistance genes. Sw-Sdr contained a putative integrase that was probably a remnant of a functional integrase. Evidence suggests that Sw-Sdr is improbably an efficient pathogenicity island. A large-scale investigation of Staphylococcus genomes showed that sdr loci were a potential hotspot of insertion sequences (ISs), which could lead to intraspecific diversity at these loci. Our work expanded the repository of Staphylococcus Sdr proteins, and for the first time, we established the connection between sdr loci and phylogenetic relationships and compared the sdr loci in different Staphylococcus species, which provided large insights into the genetic environment of CWA genes in Staphylococcus.


2021 ◽  
Vol 118 (21) ◽  
pp. e2025853118
Author(s):  
Sarah C. Bickers ◽  
Samir Benlekbir ◽  
John L. Rubinstein ◽  
Voula Kanelis

ATP binding cassette (ABC) proteins typically function in active transport of solutes across membranes. The ABC core structure is composed of two transmembrane domains (TMD1 and TMD2) and two cytosolic nucleotide binding domains (NBD1 and NBD2). Some members of the C-subfamily of ABC (ABCC) proteins, including human multidrug resistance proteins (MRPs), also possess an N-terminal transmembrane domain (TMD0) that contains five transmembrane α-helices and is connected to the ABC core by the L0 linker. While TMD0 was resolved in SUR1, the atypical ABCC protein that is part of the hetero-octameric ATP-sensitive K+ channel, little is known about the structure of TMD0 in monomeric ABC transporters. Here, we present the structure of yeast cadmium factor 1 protein (Ycf1p), a homolog of human MRP1, determined by electron cryo-microscopy (cryo-EM). A comparison of Ycf1p, SUR1, and a structure of MRP1 that showed TMD0 at low resolution demonstrates that TMD0 can adopt different orientations relative to the ABC core, including a ∼145° rotation between Ycf1p and SUR1. The cryo-EM map also reveals that segments of the regulatory (R) region, which links NBD1 to TMD2 and was poorly resolved in earlier ABCC structures, interacts with the L0 linker, NBD1, and TMD2. These interactions, combined with fluorescence quenching experiments of isolated NBD1 with and without the R region, suggest how posttranslational modifications of the R region modulate ABC protein activity. Mapping known mutations from MRP2 and MRP6 onto the Ycf1p structure explains how mutations involving TMD0 and the R region of these proteins lead to disease.


2021 ◽  
Author(s):  
Sarah C. Bickers ◽  
Samir Benlekbir ◽  
John L. Rubinstein ◽  
Voula Kanelis

AbstractATP binding cassette (ABC) proteins typically function in active transport of solutes across membranes. The ABC core structure is comprised of two transmembrane domains (TMD1 and TMD2) and two cytosolic nucleotide binding domains (NBD1 and NBD2). Some members of the C-subfamily of ABC (ABCC) proteins, including human multidrug resistance proteins (MRPs), also possess an N-terminal transmembrane domain (TMD0) that contains five transmembrane α-helices and is connected to the ABC core by the L0 linker. While TMD0 was resolved in SUR1, the atypical ABCC protein that is part of the hetero-octameric ATP-sensitive K+ channel, little is known about the structure of TMD0 in monomeric ABC transporters. Here, we present the structure of yeast cadmium factor 1 protein (Ycf1p), a homologue of human MRP1, determined by electron cryomicroscopy (cryo-EM). Comparison of Ycf1p, SUR1, and a structure of MRP1 that showed TMD0 at low resolution demonstrates that TMD0 can adopt different orientations relative to the ABC core, including a 145° rotation between Ycf1p and SUR1. The cryo-EM map also reveals that segments of the regulatory (R) region, which links NBD1 to TMD2 and was poorly resolved in earlier ABCC structures, interacts with the L0 linker, NBD1, and TMD2. These interactions, combined with fluorescence quenching experiments of isolated NBD1 with and without the R region, suggests how post-translational modifications of the R region modulate ABC protein activity. Mapping known mutations from MRP2 and MRP6 onto the Ycf1p structure explains how mutations involving TMD0 and the R region of these proteins lead to disease.Statement of SignificanceThe Ycf1p structure provides an atomic model for the TMD0 domain of ABCC transporters and for two segments of the regulatory (R) region that links NBD1 to TMD2. The orientation of TMD0 in Ycf1p differs from that seen in SUR1, the regulatory ABCC protein in KATP channels, demonstrating flexibility in TMD0/ABC core contacts. The structure suggests how post-translational modifications of the R region modulate ABC protein activity and provides a mechanistic understanding of several diseases that occur due to mutation of human homologues of Ycf1p.


2020 ◽  
Vol 117 (31) ◽  
pp. 18701-18710
Author(s):  
Gary Z. Wang ◽  
Stephen P. Goff

Yin Yang 1 (YY1) is a DNA-binding transcription factor that either activates or represses gene expression. YY1 has previously been implicated in the transcriptional silencing of many retroviruses by binding to DNA sequences in the U3 region of the viral long terminal repeat (LTR). We here show that YY1 overexpression leads to profound activation, rather than repression, of human T lymphotropic virus type 1 (HTLV-1) expression, while YY1 down-regulation reduces HTLV-1 expression. The YY1 responsive element mapped not to YY1 DNA-binding sites in the HTLV-1 LTR but to the R region. The HTLV-1 R sequence alone is sufficient to provide YY1 responsiveness to a nonresponsive promoter, but only in the sense orientation and only when included as part of the mRNA. YY1 binds to the R region of HTLV-1 RNA in vitro and in vivo, leading to increased transcription initiation and elongation. The findings indicate that YY1 is a potent transactivator of HTLV-1 gene expression acting via binding viral RNA, rather than DNA.


2020 ◽  
Vol 59 (15) ◽  
pp. 10802-10812
Author(s):  
Thomas Bell ◽  
Volodymyr Smetana ◽  
Anja-Verena Mudring ◽  
Gerd H. Meyer
Keyword(s):  

Author(s):  
Nicole Y. Chalmer

Before Australia was taken over by humans more than 55 000 years BP, the landscapes were shaped through animal agency. Extinct prehistoric fauna and megafauna had social ecological systems and actively organized ecosystems and landscapes that reflected patterns of herbivory, soil foraging, nutrient cycling and predation. Surviving species continued as agents in the ecosystem functions of the EM-R region until the beginning of European colonization in the 1860’s. The settlers used the inherent biological traits of their domesticated animals, including horses, as an agency of colonization. Horses (Equus ferus caballus) who escaped to become wild are known as Brumbies in the Australian vernacular. They adapted to the local environments and prospered. This chapter analyzes the ways Brumbies have adapted to and made the land their own. It shows how they became intimately engaged with landscape details and resources which are reflected through their creation of cultural horsetrails as they moved purposefully throughout their homelands.


2020 ◽  
Author(s):  
Danling Chai ◽  
Ming Wang ◽  
Kai Liu

<p>This paper focuses on the assessment of the multi-hazard natural disaster susceptibility and disaster risk in the Belt and Road (B&R) region. It is expected to provide a reference for cooperation in disaster risk reduction among B&R countries. Based on historical disaster data from 1980 to 2018, the disaster susceptibility of the B&R countries to multi-hazard has been analyzed using random forest model. The multi-hazard risk was further assessed based on the disaster susceptibility and Monte-Carlo method. Results show that regions with high susceptibility to meteorological hazards are mostly distributed in central Africa and the coastal areas of all continents. While Himalayan-Mediterranean seismic zone is susceptible to geological hazards. Due to the different distribution of regional exposures, the risks of economic loss and the risk of population casualties also appear differently. For economic loss risk, in grid scale very high and high level take 21% area. Europe, southeast China coast, and the Indian peninsula present higher economic loss risks. In population casualties risk, very high and high level take 15% area and in national scale the central and southern parts of Eurasia show higher population casualties risk. The results provide a comprehensive analysis of the spatial and temporal distribution, sensitivity, and disaster risk of natural disasters in B&R region, and provides a reference for regional disaster prevention and reduction cooperation.</p>


Sign in / Sign up

Export Citation Format

Share Document