ubiquitin ligase complex
Recently Published Documents


TOTAL DOCUMENTS

380
(FIVE YEARS 103)

H-INDEX

59
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Antonio Cuevas-Navarro ◽  
Laura Rodriguez-Muñoz ◽  
Joaquim Grego-Bessa ◽  
Alice Cheng ◽  
Katherine A Rauen ◽  
...  

RAS GTPases are highly conserved proteins involved in the regulation of mitogenic signaling. We have previously described a novel Cullin 3 RING E3 ubiquitin ligase complex formed by the substrate adaptor protein LZTR1 that binds, ubiquitinates, and promotes proteasomal degradation of the RAS GTPase RIT1. In addition, others have described that this complex is also responsible for the ubiquitination of canonical RAS GTPases. Here, we have analyzed the phenotypes of LZTR1 loss-of-function mutants in both fruit flies and mice and have demonstrated biochemical dependency on their RIT1 orthologs. Moreover, we show that LZTR1 is haplosufficient in mice and that embryonic lethality of the homozygous null allele can be rescued by deletion of RIT1.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huan-Lei Wu ◽  
Sen-Mao Li ◽  
Yao-chen Huang ◽  
Qi-Dong Xia ◽  
Peng Zhou ◽  
...  

Abstract Background Heterogeneous nuclear ribonucleoprotein K (HnRNPK) is a nucleic acid-binding protein that regulates diverse biological events. Pathologically, HnRNPK proteins are frequently overexpressed and clinically correlated with poor prognosis in various types of human cancers and are therefore pursued as attractive therapeutic targets for select patients. However, both the transcriptional regulation and degradation of HnRNPK in prostate cancer remain poorly understood. Methods qRT-PCR was used to detect the expression of HnRNPK mRNA and miRNA; Immunoblots and immunohistochemical assays were used to determine the levels of HnRNPK and other proteins. Flow cytometry was used to investigate cell cycle stage. MTS and clonogenic assays were used to investigate cell proliferation. Immunoprecipitation was used to analyse the interaction between SPOP and HnRNPK. A prostate carcinoma xenograft mouse model was used to detect the in vivo effects of HnRNPK and miRNA. Results In the present study, we noted that HnRNPK emerged as an important player in the carcinogenesis process of prostate cancer. miR-206 and miR-613 suppressed HnRNPK expression by targeting its 3’-UTR in PrCa cell lines in which HnRNPK is overexpressed. To explore the potential biological function, proliferation and colony formation of PrCa cells in vitro and tumor growth in vivo were also dramatically suppressed upon reintroduction of miR-206/miR-613. We have further provided evidence that Cullin 3 SPOP is a novel upstream E3 ubiquitin ligase complex that governs HnRNPK protein stability and oncogenic functions by promoting the degradation of HnRNPK in polyubiquitination-dependent proteolysis in the prostate cancer setting. Moreover, prostate cancer-associated SPOP mutants fail to interact with and promote the destruction of HnRNPK proteins. Conclusion Our findings reveal new posttranscriptional and posttranslational modification mechanisms of HnRNPK regulation via miR-206/miR-613 and SPOP, respectively. More importantly, given the critical oncogenic role of HnRNPK and the high frequency of SPOP mutations in prostate cancer, our results provide a molecular rationale for the clinical investigation of novel strategies to combat prostate cancer based on SPOP genetic status.


Author(s):  
Pingzhao Zhang ◽  
Kun Gao ◽  
Liang Zhang ◽  
Huiru Sun ◽  
Xiaying Zhao ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1116-1116
Author(s):  
Abeer Najjar

Abstract The Fanconi anemia (FA) pathway is a major player in the control of DNA replication integrity in response to replication stress. Germline defect in the pathway results in the FA syndrome characterized by developmental abnormalities, bone marrow (BM) failure, and genome instability which greatly elevates the incidence of cancers. A pivotal step in the activation of the FA DNA repair pathway is the monoubiquitination of the FANCD2 and FANCI proteins (ID2) by the FA core complex, a unique ubiquitin ligase complex which includes eight proteins (FANCA-FANCG, FANCL, and FAAP100) and UBE2T/FANCT. This monoubiquitination event enables the recruitment of the ID2 complex to chromatin and nuclear foci at sites of DNA damage. Cells with mutations in any of the FA core complex proteins lack the ability to monoubiquitinated ID2, making ID2 ubiquitination a convergence point in the pathway, with an estimation of>90% FA patients defective in this step. Additionally, somatic mutations In FA genes render tumor cells sensitive to DNA crosslinking agents, so identification of FA pathway defects provides an opportunity for therapeutic targeting. In search for additional potential target/substrate of this unique FA core ubiquitin ligase complex, we performed a high throughput genome-wide ubiquitin-specific proteomics (UbiScan) screen and found, in addition to the ID2 complex, many ubiquitinated proteins are dysregulated (mostly downregulated) in FA deficient cells compared with that of FA proficient cells. We used a Ubiquitin Remnant Motif (K- ∑-GG) Antibody Bead Conjugate (Cell Signaling Technology), a proprietary ubiquitin branch ("K- ∑-GG") antibody with specificity for a di-glycine tag that is the remnant of ubiquitin left on protein substrates after trypsin digestion, to enrich ubiquitinated peptides from trypsin digested cell samples (shNT vs shFANCA). This enrichment is followed by LC-MS/MS analysis for quantitative profiles of hundreds to over a thousand nonredundant ubiquitinated sequences. We were successful in demonstrating that under steady-state conditions (without proteasome inhibitor treatment), the ubiquitinated forms of both FANCD2 and FANCI proteins are much higher in control (shNT) HeLa cells compared with that of the cells depleted of FANCA (shFANCA). We then collaborated with the Cell signaling technology to perform a high throughput UbiScan® analysis of total ubiquitinated proteins both in total nuclei and chromatin fractions under replicative stress conditions. UbiScan® enables researchers to isolate, identify and quantitate large numbers of ubiquitin-modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of the ubiquitination sites in cellular proteins in cell and tissue samples without preconceived biases about where these modified sites occur. A total of 16,249 redundant modified peptide assignments to 7,856 modified sites for the Ubiquitin K-GG Remnant Motif Antibody were obtained. As expected, the amount of monoubiquitinated FANCD2 (at K651) and FANCI (at K523) were highly reduced in both the nuclear and chromatin fractions of Hela cells depleted of FANCA (shA). Consistent with the earlier findings, the amount of ubiquitinated ID2 proteins were extremely low in the chromatin fraction of the Hela cells depleted of FANCA. Since there are numerous ubiquitinated proteins found to be dysregulated in our UbiScan analyses, we used the following criteria to select the target proteins based on; a) -fold changes, and b) proteins that are known to participate in the DNA repair signaling pathways. We validated our UbiScan results by using an assay system to detect endogenous protein ubiquitination. We also found a significant reduction in the ubiquitination of several DNA repair-related proteins (found in our UbiScan analysis) in FANCA deficient cells. To assess FA pathway functions, we generated HAP1 and appropriate cells knock out of these select ubiquitinated target proteins by using CRISPR-Cas9 system. Then, the KO cells were examined for FA pathway functions. These results will be discussed. In conclusion, our findings reveal that the FA core ubiquitin ligase complex regulates (directly or indirectly) the ubiquitinated levels of many novel proteins outside of the ID2 complex, and these novel target proteins may provide important additional mechanistic insights into the FA DNA repair pathway. Disclosures No relevant conflicts of interest to declare.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258683
Author(s):  
N. Max Schabla ◽  
Patrick C. Swanson

The development of B and T lymphocytes critically depends on RAG1/2 endonuclease activity to mediate antigen receptor gene assembly by V(D)J recombination. Although control of RAG1/2 activity through cell cycle- and ubiquitin-dependent degradation of RAG2 has been studied in detail, relatively little is known about mechanisms regulating RAG1 stability. We recently demonstrated that VprBP/DCAF1, a substrate adaptor for the CRL4 E3 ubiquitin ligase complex, is required to maintain physiological levels of RAG1 protein in murine B cells by facilitating RAG1 turnover. Loss of VprBP/DCAF1 in vivo results in elevated RAG1 expression, excessive V(D)J recombination, and immunoglobulin light chain repertoire skewing. Here we show that RAG1 is constitutively degraded when ectopically expressed in a human fibroblast cell line. Consistent with our findings in murine B cells, RAG1 turnover under these conditions is sensitive to loss of VprBP, as well as CRL4 or proteasome inhibition. Further evidence indicates that RAG1 degradation is ubiquitin-dependent and that RAG1 association with the CRL4VPRBP/DCAF1 complex is independent of CUL4 activation status. Taken together, these findings suggest V(D)J recombination co-opts an evolutionarily conserved and constitutively active mechanism to ensure rapid RAG1 turnover to restrain excessive RAG activity.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5084
Author(s):  
Isaac Park ◽  
Tra Mi Phan ◽  
Jing Fang

Lenalidomide as well as other immunomodulatory drugs (IMiDs) have achieved clinical efficacies in certain sub-types of hematologic malignancies, such as multiple myeloma, lower-risk myelodysplastic syndromes (MDS) with a single deletion of chromosome 5q (del(5q)) and others. Despite superior clinical response to lenalidomide in hematologic malignancies, relapse and resistance remains a problem in IMiD-based therapy. The last ten years have witnessed the discovery of novel molecular mechanism of IMiD-based anti-tumor therapy. IMiDs bind human cereblon (CRBN), the substrate receptor of the CRL4 E3 ubiquitin ligase complex. Binding of CRBN with IMiDs leads to degradation of the Ikaros family zinc finger proteins 1 and 3 (IKZF1 and IKZF3) and casein kinase 1 alpha. We have found that lenalidomide-mediated degradation of IKZF1 leads to activation of the G protein-coupled receptor 68 (GPR68)/calcium/calpain pro-apoptotic pathway and inhibition of the regulator of calcineurin 1 (RCAN1)/calcineurin pro-survival pathway in MDS and acute myeloid leukemia (AML). Calcineurin inhibitor Cyclosporin-A potentiates the anti-leukemia activity of lenalidomide in MDS/AML with or without del(5q). These findings broaden the therapeutic potential of IMiDs. This review summarizes novel molecular mechanism of lenalidomide in myeloid malignancies, especially without del(5q), in the hope to highlight novel therapeutic targets.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2706
Author(s):  
Yasuhiro Fuseya ◽  
Kazuhiro Iwai

The ubiquitin system modulates protein functions by decorating target proteins with ubiquitin chains in most cases. Several types of ubiquitin chains exist, and chain type determines the mode of regulation of conjugated proteins. LUBAC is a ubiquitin ligase complex that specifically generates N-terminally Met1-linked linear ubiquitin chains. Although linear ubiquitin chains are much less abundant than other types of ubiquitin chains, they play pivotal roles in cell survival, proliferation, the immune response, and elimination of bacteria by selective autophagy. Because linear ubiquitin chains regulate inflammatory responses by controlling the proinflammatory transcription factor NF-κB and programmed cell death (including apoptosis and necroptosis), abnormal generation of linear chains can result in pathogenesis. LUBAC consists of HOIP, HOIL-1L, and SHARPIN; HOIP is the catalytic center for linear ubiquitination. LUBAC is unique in that it contains two different ubiquitin ligases, HOIP and HOIL-1L, in the same ligase complex. Furthermore, LUBAC constitutively interacts with the deubiquitinating enzymes (DUBs) OTULIN and CYLD, which cleave linear ubiquitin chains generated by LUBAC. In this review, we summarize the current status of linear ubiquitination research, and we discuss the intricate regulation of LUBAC-mediated linear ubiquitination by coordinate function of the HOIP and HOIL-1L ligases and OTULIN. Furthermore, we discuss therapeutic approaches to targeting LUBAC-mediated linear ubiquitin chains.


2021 ◽  
Vol 118 (40) ◽  
pp. e2105523118
Author(s):  
Madhurima Ghosh ◽  
Sanjeev Das

PRAMEF2 is a member of the PRAME multigene family of cancer testis antigens, which serve as prognostic markers for several cancers. However, molecular mechanisms underlying its role in tumorigenesis remain poorly understood. Here, we report that PRAMEF2 is repressed under conditions of altered metabolic homeostasis in a FOXP3-dependent manner. We further demonstrate that PRAMEF2 is a BC-box containing substrate recognition subunit of Cullin 2–based E3 ubiquitin ligase complex. PRAMEF2 mediates polyubiquitylation of LATS1 kinase of the Hippo/YAP pathway, leading to its proteasomal degradation. The site for ubiquitylation was mapped to the conserved Lys860 residue in LATS1. Furthermore, LATS1 degradation promotes enhanced nuclear accumulation of the transcriptional coactivator YAP, resulting in increased expression of proliferative and metastatic genes. Thus, PRAMEF2 promotes malignant phenotype in a YAP-dependent manner. Additionally, elevated PRAMEF2 levels correlate with increased nuclear accumulation of YAP in advanced grades of breast carcinoma. These findings highlight the pivotal role of PRAMEF2 in tumorigenesis and provide mechanistic insight into YAP regulation.


Author(s):  
Lin Zhou ◽  
Siqi Zheng ◽  
Fernando R Rosas Bringas ◽  
Bjorn Bakker ◽  
Judith E Simon ◽  
...  

Abstract Maternal embryonic leucine zipper kinase (MELK) is frequently overexpressed in cancer, but the role of MELK in cancer is still poorly understood. MELK was shown to have roles in many cancer-associated processes including tumor growth, chemotherapy resistance, and tumor recurrence. To determine whether the frequent overexpression of MELK can be exploited in therapy, we performed a high-throughput screen using a library of Saccharomyces cerevisiae mutants to identify genes whose functions become essential when MELK is overexpressed. We identified two such genes: LAG2 and HDA3. LAG2 encodes an inhibitor of the Skp, Cullin, F-box containing (SCF) ubiquitin-ligase complex, while HDA3 encodes a subunit of the HDA1 histone deacetylase complex. We find that one of these synthetic lethal interactions is conserved in mammalian cells, as inhibition of a human homolog of HDA3 (Histone Deacetylase 4, HDAC4) is synthetically toxic in MELK overexpression cells. Altogether, our work identified a novel potential drug target for tumors that overexpress MELK.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4666
Author(s):  
Grzegorz Charliński ◽  
David H. Vesole ◽  
Artur Jurczyszyn

Over the past two decades, the improvement in our understanding of the biology of MM and the introduction of new drug classes, including immunomodulatory drugs (IMiDs), proteasome inhibitors (PI), and monoclonal antibodies (MoAb), have significantly improved outcomes. The first IMiD introduced to treat MM was thalidomide. The side effects observed during treatment with thalidomide initiated work on the synthesis of IMiD analogs. Subsequently, lenalidomide and pomalidomide were developed, both with different safety profiles, and they have better tolerability than thalidomide. In 2010, the cereblon (CRBN) protein was discovered as a direct target of IMiDs. By binding to CRBN, IMiDs change the substrate specificity of the CRBN E3 ubiquitin ligase complex, which results in the breakdown of internal Ikaros and Aiolos proteins. Most clinical trials conducted, both in newly diagnosed, post-transplant maintenance and relapsed/refractory MM, report a beneficial effect of IMiDs on the extension of progression-free survival and overall survival in patients with MM. Due to side effects, thalidomide is used less frequently. Currently, lenalidomide is used at every phase of MM treatment. Lenalidomide is used in conjunction with other agents such as PIs and MoAb as induction and relapsed therapy. Pomalidomide is currently used to treat relapsed/refractory MM, also with PIs and monoclonal antibodies. Current clinical trials are evaluating the efficacy of IMiD derivatives, the CRBN E3 ligase modulators (CELMoDs). This review focuses on the impact of IMiDs for the treatment of MM.


Sign in / Sign up

Export Citation Format

Share Document