scholarly journals Protein-tyrosine Phosphatase SHP-1 Is Dispensable for FcγRIIB-mediated Inhibition of B Cell Antigen Receptor Activation

1997 ◽  
Vol 272 (32) ◽  
pp. 20038-20043 ◽  
Author(s):  
Monica J. S. Nadler ◽  
Binbin Chen ◽  
J. Simon Anderson ◽  
Henry H. Wortis ◽  
Benjamin G. Neel
2021 ◽  
Author(s):  
Jennifer J. Schwarz ◽  
Lorenz Grundmann ◽  
Thomas Kokot ◽  
Kathrin Kläsener ◽  
Sandra Fotteler ◽  
...  

ABSTRACTB cell antigen receptor (BCR) signaling is initiated by protein kinases and limited by counteracting phosphatases that currently are less well studied in their regulation of BCR signaling. We here used the B cell line Ramos to identify and quantify human B cell signaling components. Specifically, a protein tyrosine phosphatase profiling revealed a high expression of the protein tyrosine phosphatase 1B (PTP1B) in Ramos and human naïve B cells. The loss of PTP1B leads to increased B cell activation. Through substrate trapping in combination with quantitative mass spectrometry, we identified 22 putative substrates or interactors of PTP1B. We validated Igα, CD22, PLCγ1/2, CBL, BCAP and APLP2 as specific substrates of PTP1B in Ramos B cells. The tyrosine kinase BTK and the two adaptor proteins GRB2 and VAV1 were identified as direct binding partners and potential substrates of PTP1B. We showed that PTP1B dephosphorylates the inhibitory receptor protein CD22 at phosphotyrosine 807. We conclude that PTP1B negatively modulates BCR signaling by dephosphorylating distinct phosphotyrosines in B cell specific receptor proteins and various downstream signaling components.


2021 ◽  
Vol 4 (11) ◽  
pp. e202101084
Author(s):  
Jennifer J Schwarz ◽  
Lorenz Grundmann ◽  
Thomas Kokot ◽  
Kathrin Kläsener ◽  
Sandra Fotteler ◽  
...  

B cell antigen receptor (BCR) signaling is initiated by protein kinases and limited by counteracting phosphatases that currently are less well studied in their regulation of BCR signaling. Here, we used the B cell line Ramos to identify and quantify human B cell signaling components. Specifically, a protein tyrosine phosphatase profiling revealed a high expression of the protein tyrosine phosphatase 1B (PTP1B) in Ramos and human naïve B cells. The loss of PTP1B leads to increased B cell activation. Through substrate trapping in combination with quantitative mass spectrometry, we identified 22 putative substrates or interactors of PTP1B. We validated Igα, CD22, PLCγ1/2, CBL, BCAP, and APLP2 as specific substrates of PTP1B in Ramos B cells. The tyrosine kinase BTK and the two adaptor proteins GRB2 and VAV1 were identified as direct binding partners and potential substrates of PTP1B. We showed that PTP1B dephosphorylates the inhibitory receptor protein CD22 at phosphotyrosine 807. We conclude that PTP1B negatively modulates BCR signaling by dephosphorylating distinct phosphotyrosines in B cell-specific receptor proteins and various downstream signaling components.


Science ◽  
1991 ◽  
Vol 251 (4990) ◽  
pp. 192-194 ◽  
Author(s):  
Y Yamanashi ◽  
T Kakiuchi ◽  
J Mizuguchi ◽  
T Yamamoto ◽  
K Toyoshima

1995 ◽  
Vol 182 (6) ◽  
pp. 1815-1823 ◽  
Author(s):  
T Kurosaki ◽  
S A Johnson ◽  
L Pao ◽  
K Sada ◽  
H Yamamura ◽  
...  

To explore the mechanism(s) by which the Syk protein tyrosine kinase participates in B cell antigen receptor (BCR) signaling, we have studied the function of various Syk mutants in B cells made Syk deficient by homologous recombination knockout. Both Syk SH2 domains were required for BCR-mediated Syk and phospholipase C (PLC)-gamma 2 phosphorylation, inositol 1,4,5-triphosphate release, and Ca2+ mobilization. A possible explanation for this requirement was provided by findings that recruitment of Syk to tyrosine-phosphorylated immunoglobulin (Ig) alpha and Ig beta requires both Syk SH2 domains. A Syk mutant in which the putative autophosphorylation site (Y518/Y519) of Syk was changed to phenylalanine was also defective in signal transduction; however, this mutation did not affect recruitment to the phosphorylated immunoreceptor family tyrosine-based activation motifs (ITAMs). These findings not only confirm that both SH2 domains are necessary for Syk binding to tyrosine-phosphorylated Ig alpha and Ig beta but indicate that this binding is necessary for Syk (Y518/519) phosphorylation after BCR ligation. This sequence of events is apparently required for coupling the BCR to most cellular protein tyrosine phosphorylation, to the phosphorylation and activation of PLC-gamma 2, and to Ca2+ mobilization.


1993 ◽  
Vol 213 (1) ◽  
pp. 455-459 ◽  
Author(s):  
Takechiyo YAMADA ◽  
Takanobu TANIGUCHI ◽  
Cheng YANG ◽  
Satoshi YASUE ◽  
Hitoshi SAITO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document