scholarly journals Nuclear Integration of Glucocorticoid Receptor and Nuclear Factor-κB Signaling by CREB-binding Protein and Steroid Receptor Coactivator-1

1998 ◽  
Vol 273 (45) ◽  
pp. 29291-29294 ◽  
Author(s):  
Kelly-Ann Sheppard ◽  
Kathleen M. Phelps ◽  
Amy J. Williams ◽  
Dimitris Thanos ◽  
Christopher K. Glass ◽  
...  
1998 ◽  
Vol 273 (18) ◽  
pp. 10831-10834 ◽  
Author(s):  
Soon-Young Na ◽  
Soo-Kyung Lee ◽  
Su-Ji Han ◽  
Hueng-Sik Choi ◽  
Suhn-Young Im ◽  
...  

2001 ◽  
Vol 21 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Hilary M. Sheppard ◽  
Janet C. Harries ◽  
Sagair Hussain ◽  
Charlotte Bevan ◽  
David M. Heery

ABSTRACT The transcriptional activity of nuclear receptors is mediated by coactivator proteins, including steroid receptor coactivator 1 (SRC1) and its homologues and the general coactivators CREB binding protein (CBP) and p300. SRC1 contains an activation domain (AD1) which functions via recruitment of CBP and and p300. In this study, we have used yeast two-hybrid and in vitro interaction-peptide inhibition experiments to map the AD1 domain of SRC1 to a 35-residue sequence potentially containing two α-helices. We also define a 72-amino-acid sequence in CBP necessary for SRC1 binding, designated the SRC1 interaction domain (SID). We show that in contrast to SRC1, direct binding of CBP to the estrogen receptor is weak, suggesting that SRC1 functions primarily as an adaptor to recruit CBP and p300. In support of this, we show that the ability of SRC1 to enhance ligand-dependent nuclear receptor activity in transiently transfected cells is dependent upon the integrity of the AD1 region. In contrast, the putative histone acetyltransferase domain, the Per-Arnt-Sim basic helix-loop-helix domain, the glutamine-rich domain, and AD2 can each be removed without loss of ligand-induced activity. Remarkably, a construct corresponding to residues 631 to 970, which contains only the LXXLL motifs and the AD1 region of SRC1, retained strong coactivator activity in our assays.


1999 ◽  
Vol 274 (4) ◽  
pp. 1879-1882 ◽  
Author(s):  
Raj Wadgaonkar ◽  
Kathleen M. Phelps ◽  
Zaffar Haque ◽  
Amy J. Williams ◽  
Eric S. Silverman ◽  
...  

1999 ◽  
Vol 19 (9) ◽  
pp. 6367-6378 ◽  
Author(s):  
Kelly-Ann Sheppard ◽  
David W. Rose ◽  
Zaffar K. Haque ◽  
Riki Kurokawa ◽  
Eileen McInerney ◽  
...  

ABSTRACT Nuclear factor-κB (NF-κB) plays a role in the transcriptional regulation of genes involved in inflammation and cell survival. In this report we demonstrate that NF-κB recruits a coactivator complex that has striking similarities to that recruited by nuclear receptors. Inactivation of either cyclic AMP response element binding protein (CREB)-binding protein (CBP), members of the p160 family of coactivators, or the CBP-associated factor (p/CAF) by nuclear antibody microinjection prevents NF-κB-dependent transactivation. Like nuclear receptor-dependent gene expression, NF-κB-dependent gene expression requires specific LXXLL motifs in one of the p160 family members, and enhancement of NF-κB activity requires the histone acetyltransferase (HAT) activity of p/CAF but not that of CBP. This coactivator complex is differentially recruited by members of the Rel family. The p50 homodimer fails to recruit coactivators, although the p50-p65 heterodimeric form of the transcription factor assembles the integrator complex. These findings provide new mechanistic insights into how this family of dimeric transcription factors has a differential effect on gene expression.


Sign in / Sign up

Export Citation Format

Share Document