scholarly journals Purification and Characterization of a Membrane Bound Neutral pH Optimum Magnesium-dependent and Phosphatidylserine-stimulated Sphingomyelinase from Rat Brain

1998 ◽  
Vol 273 (51) ◽  
pp. 34472-34479 ◽  
Author(s):  
Bin Liu ◽  
Daniel F. Hassler ◽  
Gary K. Smith ◽  
Kurt Weaver ◽  
Yusuf A. Hannun
1982 ◽  
Vol 60 (11) ◽  
pp. 1007-1013 ◽  
Author(s):  
G. Forstner ◽  
A. Salvatore ◽  
L. Lee ◽  
J. Forstner

Intestinal maltase with a neutral pH optimum exists in both a brush border membrane-bound form and a soluble form in suckling rat intestine. Previous experiments in our laboratory have shown that the soluble enzyme contains a component which binds much more tightly to concanavalin A (ConA) than solubilized forms of the membrane enzyme. We studied the origin of this component by subjecting neutral, soluble maltase activity to chromatography on Sepharose 4B at age 13, 18 (preweaning), and 25 (postweaning) days. At 13 days, two maltase peaks were obtained with approximate molecular weights of 400 000 (peak I) and 150 000 (peak II). Peak II was less prominent at 18 days and was absent at 25 days. At 13 days, the majority of peak I consisted of material which was bound between 0.025 and 0.05 M α-methyl mannoside on gradient elution chromatography of ConA-Sepharose. Peak II contained material which eluted between 0.075 and 0.3 M α-methyl mannoside. At 25 days, all of the soluble maltase eluted between 0.025 and 0.04 M α-methyl mannoside. Peak I and peak II maltases had similar pH optima and Km's for maltase. Peak II maltase had a fourfold greater activity toward glycogen than peak I maltase with approximately the same activity for palatinose, turanose, and trehalose. Both maltases were precipitated by an antibody raised against adult membrane-bound maltase. Soluble maltase with neutral pH activity in the suckling rat intestine, therefore, consists of two immunologically related isozymes which differ in their molecular weight, their binding by ConA, and their specificity for glycogen. The small isozyme disappears at or about the time of weaning.


1982 ◽  
Vol 37 (3-4) ◽  
pp. 165-173 ◽  
Author(s):  
P. Schreier ◽  
G. Lorenz

Abstract A membrane-bound enzyme catalysing the cleavage of 13-hydroperoxy-(Z)-9,(E)-11-oc-tadecadienoic acid (13-LHPO) and 13-hydroperoxy-(Z)-9,(E)-11,(Z)-15-octadecadienoic acid (13-LnHPO) to C6-aldehydes was isolated and partially purified from apples and tomatoes. Attempts to employ Ultrogel AcA 34 and AcA 22 in a gel chromatographic purification step were partially frustrated by reaggregation phenomena. However, by using Sepharose CL-4 B an enzyme fraction (MW 200 000 Da) with lipoxygenase and fatty acid hydroperoxide cleaving activity could be separated from a high molecular-weight active eluate. By applying preparative isoelec­ tric focussing to the tomato protein we succeeded in separating the fatty acid cleaving activity from the lipoxygenase, because o f their different isoelectric points of pH 5.8 -6 .1 and pH 5.0, respectively, An 8.4-fold purification of the fatty acid cleaving activity was achieved. A pH-optimum of 5.5 and a Km-value of 2.6 × 10-5 м/1 for the 13-hydroperoxide of linoleic acid were measured. p-Chloromercuribenzoic acid (1 mм) showed significant inhibitory effect on the fatty acid hydroperoxide cleaving enzyme, but no evidence o f inhibition was found with 1 mм H2O2, KCN, DABCO and EDTA or superoxide dismutase (270 U). The maximum amount of fatty acid hydroperoxide decomposition (C6-aldehyde formation) was determined to be 59%.


1999 ◽  
Vol 274 (39) ◽  
pp. 27948-27955 ◽  
Author(s):  
Samer El Bawab ◽  
Alicja Bielawska ◽  
Yusuf A. Hannun

1981 ◽  
Vol 197 (2) ◽  
pp. 523-526 ◽  
Author(s):  
Paul D. Wightman ◽  
Mary Ellen Dahlgren ◽  
James C. Hall ◽  
Philip Davies ◽  
Robert J. Bonney

Resident mouse peritoneal macrophages contain a phospholipase C of high activity that is specific for phosphatidylinositol. The activity has a neutral pH optimum, is Ca2+-dependent and has a maximum reaction velocity of 525nmol/h per mg of protein. Certain phenothiazines are potent inhibitors of this activity.


1982 ◽  
Vol 39 (2) ◽  
pp. 366-370 ◽  
Author(s):  
K. Sakimura ◽  
K. Araki ◽  
E. Kushiya ◽  
Y. Takahashi

Sign in / Sign up

Export Citation Format

Share Document